Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 37, no. 4 | 655--665
Tytuł artykułu

Fractal analysis of the grey and binary images in diagnosis of Hashimoto's thyroiditis

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the study, a fractal analysis of thyroid ultrasound images was applied. This method has not been too often used for testing such kind of images so far. Its advantage is a tool in a form of a fractal dimension, which easily quantifies a complexity of an image texture surface. There is a close relationship between the lesions and an ultrasound image texture in a case of a diffuse form of the Hashimoto's disease. As a result of the analysis, a set of nine fractal descriptors was obtained which made it possible to distinguish healthy cases from sick ones that suffer from the diffuse form of the Hashimoto's thyroiditis. The Hellwig's method for feature selection was utilised. It found the combinations of features of the highest value of the information capacity index. These combinations were applied to build and test five popular classifiers. The following methods were implemented: decision tree, random forests, K-nearest neighbours, linear and quadratic discriminant analysis. The best results were achieved with a combination of three descriptors – fractal dimension and intercept obtained by the power spectral density method and fractal dimension estimated by the box counting method. The LDA (linear discriminant analysis) classifier based on them was characterised by a sensitivity of 96.88%, a specificity at a level of 98.44%, and its overall classification accuracy was equal to 97.66%. These results are similar to the best results of other authors cited in the work where the greyscale image analysis was used.
Wydawca

Rocznik
Strony
655--665
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38d, 20-618 Lublin, Poland, z.omiotek@pollub.pl
Bibliografia
  • [1] Loy M, Cianchetti ME, Cardia F, Melis A, Boi F, Mariotti S. Correlation of computerized gray-scale sonographic findings with thyroid function and thyroid autoimmune activity in patients with Hashimoto's thyroiditis. J Clin Ultrasound 2004;32(3):136–40.
  • [2] Mazziotti G, Sorvillo F, Iorio S, Carbone A, Romeo A, Piscopo M, et al. Grey-scale analysis allows a quantitative evaluation of thyroid echogenicity in the patients with Hashimoto's thyroiditis. Clin Endocrinol 2003;59:223–9.
  • [3] Sara R, Smutek D, Sucharda P, Svacina S. Systematic construction of texture features for Hashimoto's lymphocytic thyroiditis recognition from sonographic images. Lect Notes Artif Int 2001;2101:339–48.
  • [4] Schiemann U, Avenhaus W, Konturek JW, Gellner R, Hengst K, Gross M. Relationship of clinical features and laboratory parameters to thyroid echogenicity measured by standardized grey scale ultrasonography in patients with Hashimoto's thyroiditis. Med Sci Monit 2003;9(4):49–53.
  • [5] Kim GR, Kim E-K, Kim SJ. Evaluation of underlying lymphocytic thyroiditis with histogram analysis using grayscale ultrasound images. J Ultrasound Med 2016;35 (3):519–26.
  • [6] Koprowski R, Wróbel Z, Zieleźnik W. Analysis of thyroid ultrasonogram in Hashimoto's disease. The 2010 International Congress on Computer Applications and Computational Science. Singapore: IRAST; 2010.
  • [7] Koprowski R, Zieleźnik W, Wróbel Z, Małyszek J, Stępień B, Wójcik W. Assessment of significance of features acquired from thyroid ultrasonograms in Hashimoto's disease. Biomed Eng Online 2012;11:48. http://dx.doi.org/10.1186/1475-925X-11-48.
  • [8] Acharya UR, Faust O, Sree SV, Molinari F, Suri JS. ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput Methods Progr Biomed 2012;107(2):233–41.
  • [9] Acharya UR, Sree SV, Mookiah MR, Yantri R, Molinari F, Zieleźnik W, et al. Diagnosis of Hashimoto's Thyroiditis in ultrasound using tissue characterization and pixel classification. P I Mech Eng H 2013;227(7):788–98.
  • [10] Acharya UR, Sree SV, Krishnan MM, Molinari F, Zieleźnik W, Bardales RH, et al. Computer-aided diagnostic system for detection of Hashimoto thyroiditis on ultrasound images from a Polish population. J Ultrasound Med 2014;33:245–53.
  • [11] Koprowski R, Korzyńska A, Wróbel Z, Zieleźnik W, Witkowska A, Małyszek J, et al. Influence of the measurement method of features in ultrasound images of the thyroid in the diagnosis of Hashimoto's disease. Biomed Eng Online 2012;11:91. http://dx.doi.org/10.1186/1475-925X-11-91.
  • [12] Koprowski R, Wróbel Z, Zieleźnik W. Automatic ultrasound image analysis in Hashimoto's disease. Lect Notes Comput Sci 2010;6256:98–106.
  • [13] Bastanfard M, Jalaeian B, Jafari S. Analysis of sonogram images of thyroid gland based on wavelet transform. Int Journal of Applied Science Engineering and Technology (IJASET) World Academy of Science Engineering and Technology publications (WASET) 2007;319–22.
  • [14] Omiotek Z, Burda A, Wójcik W. Application of selected classification methods for detection of Hashimoto's thyroiditis on the basis of ultrasound images. In: Pancerz K, Zaitseva E, editors. Computational intelligence, medicine and biology. Studies in computational intelligence, 600. Springer International Publishing; 2015. p. 23–37.
  • [15] Acharya UR, Swapna G, Sree SV, Molinari F, Gupta S, Bardales RH, et al. A review on ultrasound-based thyroid cancer tissue characterization and automated classification. Technol Cancer Res Treat 2014;13(4):289–301. http://dx.doi.org/10.7785/tcrt.2012.500381.
  • [16] Iakovidis DK, Keramidas EG, Maroulis D. Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns. Artif Intell Med 2010;50(1):33–41. http://dx.doi.org/10.1016/j.artmed.2010.04.004.
  • [17] Raghavendra U, Acharya UR, Gudigar A, Tan JH, Fujita H, Hagiwara Y, et al. Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions. Ultrasonics 2017;77:110–20. http://dx.doi.org/10.1016/j.ultras.2017.02.003.
  • [18] Acharya UR, Sree SV, Krishnan MM, Molinari F, Garberoglio R, Suri JS. Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScanTM systems. Ultrasonics 2012;52(4):508–20. http://dx.doi.org/10.1016/j.ultras.2011.11.003.
  • [19] Acharya UR, Chowriappa P, Fujita H, Bhat S, Dua S, Koh JEW, et al. Thyroid lesion classification in 242 patient population using gabor transform features from high resolution ultrasound images. Knowl Based Syst 2016;107:235–45. http://dx.doi.org/10.1016/j.knosys.2016.06.010.
  • [20] Acharya UR, Faust O, Sree SV, Molinari F, Garberoglio R, Suri JS. Cost-effective and non-invasive automated benign & malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of ThyroScanTM algorithms. Technol Cancer Res Treat 2011;10(4):371–80. http://dx.doi.org/10.7785/tcrt.2012.500214.
  • [21] Clarke KC. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Comp Geosci 1986;12:713–22.
  • [22] Dennis TJ, Dessipris NG. Fractal modelling in image texture analysis. IEEE Proc F 1989;136:227–35.
  • [23] Super BJ, Bovik AC. Localized measurement of image fractal dimension using Gabor filters. J Visual Commun Image Represent 1991;2(2):114–28.
  • [24] Chan G, Wood A. Increment-based estimators of fractal dimension for two-dimensional surface data. Stat Sin 2000;10:343–76.
  • [25] Gneiting T, Sevcikova H, Percival D. Estimators of fractal dimension: assessing the roughness of time series and spatial data. Stat Sci 2012;27(2):247–77.
  • [26] Caserta F, Eldred WD, Fernandez E, Hausman RE, Stanford LR, Bulderev SY, et al. Determination of fractal dimension of physiologically characterized neurons in 2-dimensions and 3-dimensions. J Neurosci Methods 1995;56:133–44.
  • [27] Tolle CR, McJunkin TR, Gorsich DJ. An efficient implementation of the gliding box lacunarity algorithm. Physica D 2008;237(3):306–15.
  • [28] Plotnick RE, Gardner RH, O'Neil RV. Lacunarity indices as measures of landscape texture. Landsc Ecol 1993;8 (3):201–11.
  • [29] Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979;9(1):62–6.
  • [30] Bradley D, Roth G. Adaptive thresholding using the integral image 2005; 2017, http://www.scs.carleton.ca/ _roth/iit-publications-iti/docs/ gerh-50002.pdf. Accessed May 17.
  • [31] Omiotek Z, Burda A. Feature selection methods in image-based screening for the detection of Hashimoto's thyroiditis in first-contact hospitals. Barometr Regionalny 2016;14(2):187–96.
  • [32] Omiotek Z, Wójcik W. Zastosowanie metody Hellwiga do redukcji wymiaru przestrzeni cech obrazów USG tarczycy. Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska 2014;3:14–7.
  • [33] Omiotek Z, Burda A, Wójcik W. The use of decision tree induction and artificial neural networks for automatic diagnosis of Hashimoto's disease. Expert Syst Appl 2013;40:6684–9.
  • [34] Omiotek Z. Improvement of the classification quality in detection of Hashimoto's disease with a combined classifier approach. P I Mech Eng H 2017;231(8):774–82. http://dx.doi.org/10.1177/0954411917702682.
  • [35] Liao SH, Chu PH, Hsiao PY. Data mining techniques and applications – a decade review from 2000 to 2011. Expert Syst Appl 2012;39:11303–11.
  • [36] Enas GG, Chai SC. Choice of the smoothing parameter and efficiency of the k-nearest neighbor classification. Comput Math Appl 1986;12:235–44.
  • [37] Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. London: CRC Press; 1984.
  • [38] Breiman L. Random forests. Mach Learn 2001;45:5–32.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0f24e282-e7f0-4e4d-974b-02c2281cc5bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.