Warianty tytułu
Języki publikacji
Abstrakty
Coconut fiber was chemically modified by NaOCl/NaOH, and then was composited through a cross-linking reaction with glutaraldehyde. The chitosan/coconut fiber (CTS/CF) composite membranes were prepared at various ratios of coconut fiber (CF) and then tested to determine their ability to eliminate aqueous heavy metals. The results showed that CTS/CF composite membranes having CF ratio of 80 wt% exhibited good mechanical strength as 89.8MPa. In the elimination experiment of heavy metal ions, the CTS/CF 20/80 also showed that the removal capacity of Cu (II) and Pb (II) were over 90%.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
163--169
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- PhD; Faculty of Environment, University of Sciences, 227 Nguyen Van Cu St., District 5, Ho Chi Minh City 700000, Vietnam, ttctrang@hcmus.edu.vn
autor
- PhD; Department of Environmental Sciences, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam, manhhakg@sgu.edu.vn
autor
- MSc; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka, Niigata Prefecture 9402188, Japan
autor
- Prof.; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka, Niigata Prefecture 9402188, Japan
Bibliografia
- [1] Fraga, C. G. (2005). Relevance, essentiality and toxicity of trace elements in human health. Molecular aspects of medicine, 26(4-5), 235-244.
- [2] Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282-291.
- [3] Malik, D. S., Jain, C. K., & Yadav, A. K. (2017). Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Applied Water Science, 7(5), 2113-2136.
- [4] Kanmani, P., Aravind, J., Kamaraj, M., Sureshbabu, P., & Karthikeyan, S. (2017). Environmental applications of chitosan and cellulosic biopolymers: a comprehensive outlook. Bioresource Technology, 242, 295-303.
- [5] Sarkar, K., Debnath, M., & Kundu, P. P. (2012). Recyclable crosslinked O-carboxymethyl chitosan for removal of cationic dye from aqueous solutions. Hydrology Current Research, 3, 1-9.
- [6] Brigida, A. I. S., Calado, V. M. A., Goncalves, L. R. B., & Coelho, M. A. Z. (2010). Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers, 79(4), 832.838.
- [7] Sun, X., Peng, B., Ji, Y., Chen, J., & Li, D. (2009). Chitosan (chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption. AIChE Journal, 55(8), 2062.2069.
- [8] Begum, A. A., Radhakrishnan, R., & Nazeer, K. P. (2011). Study of structure-property relationship on sulfuric acid crosslinked chitosan membranes. Malaysian Polymer Journal6, 1, 27.38.
- [9] Trang, T. T. C., & Kobayashi, T. (2011). Vulcanized paper for separation of alcohol aqueous solutions by pervaporation. Journal of Applied Polymer Science, 121(2), 639.647.
- [10] Boonmahitthisud, A., Nakajima, L., Nguyen, K. D., & Kobayashi, T. (2017). Composite effect of silica nanoparticle on the mechanical properties of cellulose. based hydrogels derived from cottonseed hulls. Journal of Applied Polymer Science, 134(10).
- [11] Chen, Y., Liu, C., Chang, P. R., Cao, X., & Anderson, D. P. (2009). Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydrate Polymers, 76(4), 607.615.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0f23f94c-e269-49a2-86b6-78b335dfbaf2