Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 22, nr 1 | 49--54
Tytuł artykułu

An inequality involving the gamma and digamma functions

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the authors establish an inequality involving the gamma and digamma functions and apply it to prove the negativity and monotonicity of a function involving the gamma and digamma functions.
Wydawca

Rocznik
Strony
49--54
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, P. R. China
  • College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, P. R. China
  • Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, P. R. China
autor
  • School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, P. R. China
Bibliografia
  • [1] J. Dubourdieu, Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes, Compos. Math. 7 (1939), 96-111.
  • [2] N. Elezovic, C. Giordano and J. Pecarîc, The best bounds in Gautschi’s inequality, Math. Inequal. Appl. 3 (2000), 239-252.
  • [3] N. Elezović and J. Pecarić, Differential and integral f-means and applications to digamma function, Math, Inequal. Appl. 3 (2000), no. 2,189-196.
  • [4] B.-N. Guo and F. Qi, Two new proofs of the complete monotonicity of a function involving the psi function, Bull. Korean Math. Soc. 47 (2010), no. 1,103-111.
  • [5] B.-N. Guo and F. Qi, Sharp inequalities for the psi function and harmonic numbers, Analysis (Berlin) 34 (2014), no. 2, 201-208.
  • [6] S. Guo, F. Qi and H. M. Srivastava, Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic, Integral Transforms Spec. Funct. 18 (2007), no. 11,819-826.
  • [7] B.-N. Guo, F. Qi, J.-L. Zhao and Q.-M. Luo, Sharp inequalities for polygamma functions, Math. Slovaca 65 (2015), no. 1, 103-120.
  • [8] J.-C. Kuang, Changyông Bùdëngshî (in Chinese), Appl. Inequal., 3rd ed., Shandong Science and Technology Press, Ji'nan City, 2004.
  • [9] D. S. Mitrinovic, Analytic Inequalities, Springer, Berlin, 1970.
  • [10] F. Qi, A new lower bound in the second Kershaw's double inequality, J. Comput Appl. Math. 214 (2008), no. 2, 610-616.
  • [11] F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Article ID 493058.
  • [12] F. Qi, Bounds for the ratio of two gamma functions: From Gautschi's and Kershaw's inequalities to complete monotonicity, Turkish J. Anal. Number Theory 2 (2014), no. 5,152-164.
  • [13] F. Qi, R.-Q. Cui, C.-P. Chen and B.-N. Guo, Some completely monotonic functions involving polygamma functions and an application, J. Math. Anal. Appl. 310 (2005), no. 1, 303-308.
  • [14] F. Qi and B.-N. Guo, Necessary and sufficient conditions for a function involving a ratio of gamma functions to be logarithmically completely monotonic, preprint (2009), http://arxiv.org/abs/0904.1101.
  • [15] F. Qi and B.-N. Guo, An inequality involving the gamma and digamma functions, preprint (2011), http://arxiv.org/abs/1101.4698.
  • [16] F. Qi, S. Guo and S.-X. Chen, A new upper bound in the second Kershaw's double inequality and its generalizations, J. Comput. Appl. Math. 220 (2008), no. 1-2,111-118.
  • [17] F. QÎ, S. Guo and B.-N. Guo, Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math. 233 (2010), no. 9, 2149-2160.
  • [18] F. Qiand W.-H. Li, A logarithmically completely monotonic function involving the ratio of gamma functions, J. Appl. Anal. Comput. 5 (2015), no. 4, 626-634.
  • [19] F. Qi, X.-A. Li and S.-X. Chen, Refinements, extensions and generalizations of the second Kershaw's double inequality, Math. Inequal. Appl. 11 (2008), no. 3, 457-465.
  • [20] F. Qi and Q.-M. Luo, Bounds for the ratio of two gamma functions: From Wenders and related inequalities to logarithmically completely monotonic functions, Banach J. Math. Anal. 6 (2012), no. 2, 132-158.
  • [21] F. Qi and Q.-M. Luo, Bounds for the ratio of two gamma functions: From Wendel's asymptotic relation to Elezovic-Giordano-Pecaric's theorem, J. Inequal Appl. 2013 (2013), Article ID 542.
  • [22] F. Qi, C.-F. Wei and B.-N. Guo, Complete monotonicity of a function involving the ratio of gamma functions and applications, Banach J. Math. Anal. 6 (2012), no. 1, 35-44.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0f1e7a78-b4a5-4c32-83fc-f26ae782b398
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.