Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 71, no. 4 | 1705--1715
Tytuł artykułu

A new method of balanced edge detection based on curvature for gravity data

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The edge detection method can be used to delineate the position of the structural boundary of the geological body, and it occupies an important position in the processing of gravity data. The shortcomings of traditional edge detection methods are that the output boundary is divergent, the Strength and weak anomalies cannot be balanced, or false boundaries appear in the recognition results. There is a close connection between gravity anomaly and its curvatures and subsurface geological formations. Thus they can be used to describe the geometry of subsurface formations. In this paper, a new method of balanced edge detection based on curvature is proposed by combining the fusion formula of average curvature, vertical curvature, and the degree of curvature. Model tests show that the method proposed in this paper has obvious advantages compared with the recognition effects of several traditional curvature and equalization filtering methods. The edge detection results of the proposed method have good convergence. When both positive and negative anomalies exist, this method is less affected and has anti-noise capabilities. Applying the method to real field data, the results show that the identified geological body structural boundaries are clearer and more accurate, and can be applied to more complex geological environments.
Wydawca

Czasopismo
Rocznik
Strony
1705--1715
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524004, China, jiangdandan_chn@163.com
autor
  • Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524004, China, zhanghr@zjblab.com
Bibliografia
  • 1. Al-Dossary S, Marfurt KJ (2006) 3D volumetric multispectral estimates of reflector curvature and rotation. Geophysics 71(5):41
  • 2. Arisoy OM, Dikmen U (2015) Edge enhancement of magnetic data using fractional-order-derivative filters. Geophys J Soc Explorat Geophys 80(1):J7–J17
  • 3. Blakely RJ, Simpson RW (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51(7):1494–1498
  • 4. Cooper GRJ (2009) Balancing images of potential-field data. Geophysics 74(3):L17–L20
  • 5. Cooper GRJ (2010) Enhancing ridges in potential field data. Exploration Geophysics 41(2):170–173
  • 6. Cooper GRJ (2013) The removal of unwanted edge contours from gravity datasets. Explorat Geophys 44(1):42–47
  • 7. Cordell L (1979) Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico. Guidebook to Santa Fe Country. In: Ingersoll, RV, Ed, New Mexico geological society guidebook 30th field conference pp 59–64
  • 8. Cordell L (1982) Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin New Mexico.SEG Tech Prog Expand Abstr 1(1): 0246
  • 9. Evjen HM (1936) The place of vertical gradient gravitational interpretations. Geophysics 1(1):127–136
  • 10. Gao DL (2013) Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications. Geophysics 78(2):O21–O31
  • 11. Hansen RO, Deridder E (2006) Linear feature analysis for aeromagnetic data. Geophysics 71(6):L61–L67
  • 12. Hood P (1965) Gradient measurements in ground magnetic prospecting. Geophysics 30(3):403–410
  • 13. Li X (2014) Curvature of a geometric surface and curvature of gravity and magnetic anomalies. Geophysics 80(1):G15–G26
  • 14. Ma G, Liu C, Li L (2014) Balanced horizontal derivative of potential field data to recognize the edges and estimate location parameters of the source. J Appl Geophys 108:12–18
  • 15. Miller HG, Singh V (1994) Potential tilt-A new concept for location of potential field sources. J Appl Geophys 32(2):213–217
  • 16. Nabighian MN (1972) The analytical signal of two-dimensional magnetic bodies with polygonal cross-section, its properties and use for automated interpretation. Geophysics 37(3):780–786
  • 17. Nabighian MN (1974) Additional comments on the analytic signal of two‐dimensional magnetic bodies with polygonal cross‐section. Geophysics 39(1):85–92. https://doi.org/10.1190/1.1440416
  • 18. Nabighian MN, Misac N (1984) Toward a three-dimensional automatic interpretation of potential field data via generalized hilbert transforms fundamental relations. Geophysics 49(6):44–48
  • 19. Oliveira SP, Ferreira FJF, Souza J (2017) Edge Detect PFI: An algorithm for automatic edge detection in potential field anomaly images-application to dike-like magnetic structures. Comput. Geosci. 103:80–91
  • 20. Pham LT, Eldosouky AM, Oksum E, Saada SA (2020) A new high resolution filter for source edge detection of potential field data. Geoc Int 37(11):3051–3068
  • 21. Phillips JD, Hansen RO, Blakely RJ (2007) The use of curvature in potential-field interpretation. Explorat Geophys 38(2):111–119
  • 22. Rajagopalan S, Milligan P (1994) Image enhancement of aeromagnetic data using automatic gain control. Explorat Geophys 25(4):173–178
  • 23. Roberts A (2001) Curvature attributes and their application to 3D interpreted horizons. First Break 19(2):85–100
  • 24. Roest WR (1992) Magnetic interpretation using the 3-D analytic signal. Geophysics 57(1):116
  • 25. Rosenbach O (1953) A contribution to the computation of the „second derivative” from gravity data. Geophysics 18(4):894–907
  • 26. Slotnick MM (1932) Curvature of equipotential surfaces. Aapg Bull 12:1250–1259
  • 27. Torge WMJ (2012) Geodesy, Geodesy
  • 28. Verduzco B, Fairhead JD, Green CM, MacKenzie C (2004) New insights into magnetic derivatives for structural mapping. Lead Edge 23(2):116–119
  • 29. Wijns C, Perez C, Kowalczyk P (2005) Theta map: edge detection in magnetic data. Geophysics 70(4):39–43
  • 30. Xia T, Zhang J, Tian T (2019) Three-dimensional modeling of the crust structure of Longmenshan fault zone. Acta Seismolog Sin 41(6):743–756
  • 31. Xiong X, Gao R, Zhang J, Wang H, Guo L (2015) Differences of structure in mid-lower crust between the eastern and western blocks of the Sichuan basin. Chin J Geophys 58(7):2413–2423
  • 32. Yuan Y, Gao JY, Chen LN (2016) Advantages of horizontal directional Theta method to detect the edges of full tensor gravity gradient data. J Appl Geophys 130:53–61
  • 33. Zhou S, Huang D, Jiao J (2017) Total horizontal derivatives of potential field three-dimensional structure tensor and their application to detect source edges. Acta Geodaet et Geophys 52(3):317–329
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0ef3c156-66a5-49a4-a670-fab2c6e8e028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.