Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | Vol. 70, no 6 | 2629--2646
Tytuł artykułu

Gravity inversion of basement relief using imperialist competitive algorithm with hybrid techniques

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Classically, local deterministic optimization techniques have been employed to solve such nonlinear gravity inversion problem. Nevertheless, local search methods can also be easily implemented and demonstrate higher rates of convergence; but in highly nonlinear cases such as geophysical problems, they require a reliable initial model which should be adequately close to the true model. Recently, global optimization methods have shown promising results as an alternative to classical inversion methods. Each of the global optimization algorithms has unique benefits and faults; therefore, applying different combinations of them is one of the proposed solutions for overcoming their distinct limitations. In this research, the design and implementation of the hybrid method based on a combination of the imperialist competitive algorithm (ICA) and firefly algorithm (FA) as tools of two-dimensional nonlinear modeling of gravity data and as a substitute for the local optimization methods were investigated. Hybrid of ICA and FA algorithm (known as ICAFA) is a modified form of the ICA algorithm based on the firefly algorithm. This modification results in an increase in the exploratory capability of the algorithm and improvement of its convergence rate. This inversion technique was first successfully tested on a synthetic gravity anomaly originated from a simulated sedimentary basin model both with and without the presence of white Gaussian noise (WGN). At last, the method was applied to the Bouguer anomaly from a real gravity profile in Moghan sedimentary basin (Iran). The results of this modeling were compatible with previously published works which consisted of both seismic analysis and other gravity interpretations. In order to estimate the uncertainty of solutions, several inversion runs were also conducted independently and the results were in line with the final solution.
Wydawca

Czasopismo
Rocznik
Strony
2629--2646
Opis fizyczny
Bibliogr. 77 poz.
Twórcy
  • Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
autor
  • Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
Bibliografia
  • 1. Afonso LD, Mariani VC, Dos Santos CL (2013) Modified imperialist competitive algorithm based on attraction and repulsion concepts for reliability-redundancy optimization. Expert Syst Appl 40(9):3794–3802
  • 2. Al‐Chalabi M (1971) Some studies relating to nonuniqueness in gravity and magnetic inverse problems. Geophysics 36(5):835–855. https://doi.org/10.1190/1.1440219
  • 3. Aliniya Z, Keyvanpour M (2018) Solving constrained optimization problems using the improved imperialist competitive algorithm and Deb’s technique. J Exp Theor Artif Intell 30(6):927–951
  • 4. Alvandi A, Hoseini AR (2014) Inversion of gravity data based artificial bee colony (BCO) algorithm: application to synthetic and real data. Int J Adv Earth Sci 3(2):73–80
  • 5. Amini A (2009) Sequence stratigraphic analysis of the Oligo-Miocene siliciclastic reservoir in Moghan area, NW Iran.
  • 6. Ansari-Ardeh MA, Menhaj MB, Esmailian E, Zandhessami H (2017) EXPLICA: an explorative imperialist competitive algorithm based on the notion of explorers with an expansive retention policy. Appl Soft Comput 54:74–92
  • 7. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialist competition. In: IEEE congress on evolutionary computation, pp 4661–4667
  • 8. Aydilek IB (2018) A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl Soft Comput 66:232–249
  • 9. Balkaya Ç, Ekinci YL, Göktürkler G, Turan S (2017) 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm. J Appl Geophys 136:372–386
  • 10. Barbosa VCF, Silva JBC (1994) Generalized compact gravity inversion. Geophysics 59(1) 57–68. https://doi.org/10.1190/1.1443534
  • 11. Barbosa VCF, Silva JB, Medeiros WE (1997) Gravity inversion of basement relief using approximate equality constraints on depths. Geophysics 62(6):1745–1757
  • 12. Biswas A, Sharma SP (2020) Advances in Modeling and Interpretation in Near Surface Geophysics. Springer International Publishing, New York
  • 13. Bohidar RN, Sullivan JP, Hermance JF (2001) Delineating depth to bedrock beneath shallow unconfined aquifers: a gravity transect across the Palmer river basin. Ground Water 39(5):729–736
  • 14. Boschetti F, Dentith M, List R (1997) Inversion of potential field data by genetic algorithms. Geophys Prospect 45(3):461–478
  • 15. Bott MHP (1960) The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophys J Int 3(1):63–67
  • 16. Chakravarthi V, Sundararajan N (2007) 3D gravity inversion of basement relief—a depth-dependent density approach. Geophysics 72(2):I23–I32
  • 17. Chakravarthi V (1995) Gravity interpretation of nonoutcropping sedimentary basins in which the density contrast decreases parabolically with depth. Pure Appl Geophys 145(2):327–335. https://doi.org/10.1007/BF00880274
  • 18. Chen W, Li D, Liu YJ (2018) A novel hybrid ICA-FA algorithm for multi-period uncertain portfolio optimization model based on multiple criteria. IEEE Trans Fuzzy Syst 27:1023–1036
  • 19. Duan H, Xu C, Liu S, Shao S (2010) Template matching using chaotic imperialist competitive algorithm. Pattern Recogn Lett 31(13):1868–1875
  • 20. Ekinci YL, Balkaya Ç, Göktürkler G (2019) Parameter estimations from gravity and magnetic anomalies due to deep-seated faults: differential evolution versus particle swarm optimization. Turkish J Earth Sci 28(6):860–881
  • 21. Ekinci YL, Balkaya Ç, Göktürkler G, Özyalın Ş (2021) Gravity data inversion for the basement relief delineation through global optimization: a case study from the Aegean Graben System, western Anatolia, Turkey. Geophys J Int 224(2):923–944
  • 22. Ekinci YL, Balkaya Ç, Göktürkler G, Turan S (2016) Model parameter estimations from residual gravity anomalies due to simple-shaped sources using Differential Evolution Algorithm. J Appl Geophys 129:133–147
  • 23. Ekinci YL, Özyalın Ş, Sındırgı P, Balkaya Ç, Göktürkler G (2017) Amplitude inversion of the 2D analytic signal of magnetic anomalies through the differential evolution algorithm. J Geophys Eng 14(6):1492–1508
  • 24. Fakhrerad M, Nejati Kalateh A, Ghomi S (2015) Underground contour (UGC) mapping using potential field, well log and comparing with seismic interpretation in Lavarestan area. J Min Environ 6(1):55–62
  • 25. Fang Q, Nguyen H, Bui XN, Nguyen-Thoi T (2019) Prediction of blast-induced ground vibration in open-pit mines using a new technique based on imperialist competitive algorithm and M5Rules. Nat Resour Res 29(2):791–806
  • 26. Farahani SM, Abshouri AA, Nasiri B, Meybodi MR (2012) Some hybrid models to improve firefly algorithm performance. Int J Artif Intell 8(12):97–117
  • 27. Feng X, Wang W, Yuan B (2018) 3D gravity inversion of basement relief for a rift basin based on combined multinorm and normalized vertical derivative of the total horizontal derivative techniques. Geophysics 83(5):G107–G118
  • 28. Fernandez-Martinez J, Fernandez-Muniz MZ, Tompkins MJ (2012) on the topography of the cost functional in linear and nonlinear inverse problems. Geophysics 77(1):1–15
  • 29. Fernández-Martínez JL, García-Gonzalo E, Naudet V (2010) Particle swarm optimization applied to solving and appraising the streaming-potential inverse problem. Geophysics 75(4):WA3–WA15
  • 30. Fister I, Fister I Jr, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46
  • 31. Fotouhi M, (1973) A Comprehensive Review of Geology and Oil Possibilities in Moghan Area. NIOC, Geological Report, 348 pp
  • 32. Gavin H (2011) The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering, Duke University, pp 1-15
  • 33. Göktürkler G, Balkaya Ç (2012) Inversion of self-potential anomalies caused by simple-geometry bodies using global optimization algorithms. J Geophys Eng 9(5):498–507
  • 34. Jafarzadeh M, Harami RM, Friis H, Amini A, Mahboubi A, Lenaz D (2014) Provenance of the Oligocene-Miocene Zivah Formation, NW Iran, assessed using heavy mineral assemblage and detrital clinopyroxene and detrital apatite analyses. J Afr Earth Sc 89:56–71
  • 35. Jamasb A, Motavalli-Anbaran S (2016) Non-linear stochastic inversion of regional Bouguer anomalies by means of particle swarm optimization. Iran J Geophys 10(5):10–21
  • 36. Jamasb A, Motavalli-Anbaran SH, Zeyen H (2017) Non-linear stochastic inversion of gravity data via quantum behaved particle swarm optimization: application to Eurasia-Arabia collision zone (Zagros, Iran). Geophys Prospect 65:274–294
  • 37. Jamasb A, Motavalli-Anbaran SH, Ghasemi K (2019) A novel hybrid algorithm of particle swarm optimization and evolution strategies for geophysical non-linear inverse problems. Pure Appl Geophys 176(4):1601–1613
  • 38. Joolaei A, Arab-Amiri A, Nejati A (2019) Gravity nonlinear inverse modeling of basement relief via imperial competition algorithm. Iran J Res Appl Geophys 6(2):1–13
  • 39. Joolaei A, Arab-Amiri A, Nejati A, Ghomi S (2020) Depth Estimation of Sedimentary Basins Basement from gravity data via competitive swarm optimization. Iran J Pet Res, in Press. https://doi.org/10.22078/pr.2020.3843.2755
  • 40. Kaftan İ (2017) Interpretation of magnetic anomalies using a genetic algorithm. Acta Geophys 65(4):627–634
  • 41. Kashani AR, Gandomi AH, Mousavi M (2016) Imperialistic competitive algorithm: a metaheuristic algorithm for locating the critical slip surface in 2-dimensional soil slopes. Geosci Front 7(1):83–89
  • 42. Last BJ, Kubik K (1983) Compact gravity inversion. Geophysics 48(6):713–721
  • 43. Leao JW, Menezes PT, Beltrão JF, Silva JB (1996) Gravity inversion of basement relief constrained by the knowledge of depth at isolated points. Geophysics 61(6):1702–1714
  • 44. Liu S, Hu X, Liu T, Xi Y, Cai J, Zhang H (2015) Ant colony optimization inversion of surface and borehole magnetic data under lithological constraints. J Appl Geophys 112:115–128
  • 45. Maheri MR, Talezadeh M (2018) An enhanced imperialist competitive algorithm for optimum design of skeletal structures. Swarm Evol Comput 40:24–36
  • 46. Montesinos FG, Arnoso J, Vieira R (2005) Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands). Int J Earth Sci 94(2):301–316
  • 47. Mojica OF, Bassrei A, (2015) Application of the generalized simulated annealing algorithm to the solution of 2d gravity inversion of basement relief. In: 3rd Latin American Geosciences Student Conference.
  • 48. Mundim KC, Lemaire TJ, Bassrei A (1998) Optimization of non-linear gravity models through generalized simulated annealing. Phys A 252(3–4):405–416
  • 49. Nabighian MN, Ander ME, Grauch VJS, Hansen RO, LaFehr TR, Li Y, Pearson WC, Peirce JW, Phillips JD, Ruder ME (2005) Historical development of the gravity method in exploration. Geophysics 70(6):63ND–89ND. https://doi.org/10.1190/1.2133785
  • 50. Nagihara S, Hall SA (2001) Three-dimensional gravity inversion using simulated annealing: constraints on the diapiric roots of allochthonous salt structures. Geophysics 66(5):1438–1449
  • 51. Nejati A, Ebrahimzadeh AV, Shahin E, Motavalli AS, Ghomi S, Javan E (2010) 2-D Non-linear inverse modeling of moghan area using Levenberg-Marquardt’s method. J Geosci 19:13–20
  • 52. Pal SK, Rai CS, Singh AP (2012) Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems. Int J Intell Syst Appl 4(10):50
  • 53. Parker RL (1973) The rapid calculation of potential anomalies. Geophys J Int 31(4):447–455. https://doi.org/10.1111/j.1365-246X.1973.tb06513.x
  • 54. Pallero JLG, Fernandez-Martinez JL, Bonvalot S, Fudym O (2015) Gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization. J Appl Geophys 116:180–191
  • 55. Pallero JLG, Fernández-Martínez JL, Bonvalot S, Fudym O (2017) 3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization. J Appl Geophys 139:338–350
  • 56. Rao DB (1990) Analysis of gravity anomalies of sedimentary basins by an asymmetrical trapezoidal model with quadratic density function. Geophysics 55:226–231
  • 57. Redoloza F, Li L (2020) A comparison of extremal optimization, differential evolution and particle swarm optimization methods for well placement design in groundwater management. Math Geosci 53:711–735
  • 58. Rezaie M, Moradzadeh A, Nejati A, Aghajani H (2017) Fast 3D focusing inversion of gravity data using reweighted regularized Lanczos bidiagonalization method. Pure Appl Geophys 174(1):359–374
  • 59. Roy L, Sen MK, Blankenship DD, Stoffa PL, Richter TG (2005) Inversion and uncertainty estimation of gravity data using simulated annealing: an application over Lake Vostok, East Antarctica. Geophysics 70(1):1–12
  • 60. Sadhu AK, Rakshit P, Konar A (2016) A modified imperialist competitive algorithm for multi-robot stick-carrying application. Robot Auton Syst 76:15–35
  • 61. Salehpoor IB, Molla-Alizadeh-Zavardehi S (2019) A constrained portfolio selection model at considering risk-adjusted measure by using hybrid meta-heuristic algorithms. Appl Soft Comput 75:233–253
  • 62. Schaefer DH (1983) Gravity survey of Dixie Valley, west-central Nevada. U.S. Geological Survey Open-File Report 82–111.
  • 63. Sen MK, Stoffa PL (2013) Global optimization methods in geophysical inversion. Cambridge University Press
  • 64. Silva JBC, Costa DCL, Barbosa VCF (2006) Gravity inversion of basement relief and estimation of density contrast variation with depth. Geophysics 71(5):J51–J58
  • 65. Silva JB, Oliveira AS, Barbosa VCF (2010) Gravity inversion of 2D basement relief using entropic regularization. Geophysics 75(3):I29–I35
  • 66. Silva JB, Santos DF (2016) Efficient gravity inversion of basement relief using a versatile modeling algorithm. Geophysics 82(2):23–34
  • 67. Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. John Wiley and Sons, New Jersey
  • 68. Tavakoli M, Nejati KA (2015) Study of North West Sedimentary Basin of Iran by 3D Modeling of Gravity Data.
  • 69. Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Winston & Sons
  • 70. Vasiljević I, Ignjatović S, Durić D (2019) Simple 2D gravity–density inversion for the modeling of the basin basement: example from the Banat area, Serbia. Acta Geophys 67(6):1747–1758
  • 71. White JT, Connor CB, Connor L, Hasenaka T (2017) Efficient inversion and uncertainty quantification of a tephra fallout model. J Geophys Res Solid Earth 122(1):281–294
  • 72. Xu S, Wang Y, Lu P (2017) Improved imperialist competitive algorithm with mutation operator for continuous optimization problems. Neural Comput Appl 28(7):1667–1682. https://doi.org/10.1007/s00521-015-2138-y
  • 73. Yang XS (2008) Nature-Inspired Metaheuristic Algorithms. Luniver Press, UK
  • 74. Yang XS, (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms, Springer, Berlin, Heidelberg, pp 169–178
  • 75. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102
  • 76. Yuan S, Tian N, Chen Y, Liu H, Liu Z, (2008) Nonlinear geophysical inversion based on ACO with hybrid techniques. In: 2008 fourth international conference on natural computation, vol. 4. IEEE, pp 530–534
  • 77. Zhou X (2012) Gravity inversion of 2D bedrock topography for heterogeneous sedimentary basins based on line integral and maximum difference reduction methods. Geophys Prospect 61(1):220–234
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0ee7de2e-35b9-4d0a-b1b9-3e793c580bb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.