Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 70, nr 2 | 179--193
Tytuł artykułu

Study on the fire resistance of RC beams reinforced with BFRP and HFRP bars

Treść / Zawartość
Warianty tytułu
PL
Badanie nośności ogniowej belek betonowych zbrojonych prętami BFRP i HFRP
Języki publikacji
EN
Abstrakty
EN
For non-metallic reinforcement to be successfully integrated into residential and commercial construction, extensive research is required to understand the structural performance of Fiber Reinforced Polymer (FRP) reinforced concrete (RC) elements in various conditions, including the effect of elevated temperatures on structural performance. To accomplish this, a full-scale investigation was performed on the structural performance of FRP-RC elements subjected to elevated temperatures. The study involved conducting fire tests on beams, where the midsection was heated from below (tension zone) and the sides while being simultaneously loaded with 50% of their ultimate loads. The beams were reinforced with Basalt FRP (BFRP) bars and a hybrid composite of Carbon and Basalt Fibers (HFRP) bars. The HFRP-RC beams showed better resistance to the combined effect of loading and elevated temperatures compared to BFRP-RC beams. This study provides insights into the behavior of FRP materials in RC structures subjected to high temperatures, and contributes to the advancement of knowledge in this field.
PL
Dla skutecznego stosowania niemetalicznego zbrojenia w obiektach mieszkalnych i komercyjnych konieczne jest przeprowadzenie obszernych badań mających na celu zrozumienie zachowania strukturalnego elementów betonowych zbrojonych prętami FRP (ang. Fibre-Reinforced Polymers) w różnych warunkach, w tym wpływu podwyższonych temperatur na ich nośność. W tym celu przeprowadzono badania w skali rzeczywistej dotyczące elementów zginanych poddanych podwyższonym temperaturom. Badania obejmowały przeprowadzenie testów ogniowych na belkach, gdzie środkowa część była podgrzewana od dołu oraz ze stron bocznych, jednocześnie obciążając je 50% siły niszczącej (siła niszcząca została wyznaczona na bazie próbek referencyjnych – bez wpływu temperatury). Ponieważ głównym celem było zbadanie wpływu rodzaju zbrojenia FRP na odporność ogniową belek, zastosowano różne rodzaje prętów w strefie rozciągania (dolna część belek): zbrojenie na bazie włókien bazaltowych BFRP (ang. Basalt FRP) oraz hybrydowe zbrojenie HFRP (ang. Hybrid FRP) z włóknami węglowymi i bazaltowymi. Belki zbrojone prętami HFRP nie uległy zniszczeniu w zakładanym czasie i zostały poddane testowi w celu określenia ich rezydualnej nośności w przeciwieństwie do belek ze zbrojeniem BFRP. Badania te przedstawiają zachowanie elementów zginanych ze zbrojeniem FRP poddanych działaniu wysokich temperatur i przyczyniają się do poszerzenia wiedzy w tym obszarze.
Wydawca

Rocznik
Strony
179--193
Opis fizyczny
Bibliogr. 29 poz., il., tab.
Twórcy
Bibliografia
  • [1] A. Nanni and A. Prota, “Case studies on strengthening of concrete and masonry structures”, Alternativas, vol. 17, no. 3, pp. 198-206, 2017, doi: 10.23878/alternativas.v17i3.228.
  • [2] A. Gupta and V. Singhal, “Strengthening of confined masonry structures for in-plane loads: a review”, IOP Conference Series: Materials Science and Engineering, vol. 936, art. no. 012031, 2020, doi: 10.1088/1757-899X/936/1/012031.
  • [3] G. Nkurunziza, A. Debaiky, P. Cousin, and B. Benmokrane, “Durability of GFRP bars: a critical review of the literature”, Progress in Structural Engineering and Materials, vol. 7, no. 4, pp. 194-209, 2005, doi: 10.1002/pse.205.
  • [4] M.L. Porter and B.A. Barnes, “Accelerated durability of FRP reinforcement for concrete structures”, in 1st International Conference on Durability of Fiber Reinforced Polymer for Construction, no. 1. 1998, pp. 191-202.
  • [5] S. Yehia and G. Kashwani, “Performance of structures exposed to extreme high temperature - an overview”, Open Journal of Civil Engineering, vol. 3, no. 3, pp. 154-161, 2013, doi: 10.4236/ojce.2013.33018.
  • [6] G.A. Kashwani and A.K. Al-Tamimi, “Evaluation of FRP bars performance under high temperature”, Physics Procedia, vol. 55, pp. 296-300, 2014, doi: 10.1016/j.phpro.2014.07.043.
  • [7] A. Garbacz, W.A. Radomski, and P. Mossakowski, “Alternatywne zbrojenie betonu kompozytami FRP - Zagadnienie kompatybilności“ (Alternative reinforcement of concrete using FRP composites - compatibility issues), Mosty, no. 73, pp. 42-45, 2015 (in Polish).
  • [8] R.V. Balendran, T.M. Rana, T. Maqsood, and W.C. Tang, “Application of FRP bars as reinforcement in civil engineering structures”, Structural Survey, no. 20, no. 2, pp. 62-72, 2002, doi: 10.1108/02630800210433837.
  • [9] K. Ogrodowska, K. Łuszcz, and A. Garbacz, “Nanomodification, hybridization and temperature impact on shear strength of basalt fiber-reinforced polymer bars”, Polymers, vol. 13, no. 16, pp. 1-12, 2021, doi: 10.3390/polym13162585.
  • [10] A. Urbański, “Compressive strength of modified FRP hybrid bars”, Materials, vol. 13, no. 8, pp. 1-17, 2020, doi: 10.3390/MA13081898.
  • [11] K. Protchenko, F. Zayoud, and M. Urbański, “Shear strength testing of basalt-,hybrid-, and nano-hybrid fibre-reinforced polymer bars”, Archives of Civil Engineering, vol. 67, no. 2, pp. 323-336, 2021, doi: 10.24425/ace.2021.137171.
  • [12] K. Ogrodowska, K. Łuszcz, and A. Garbacz, “The effect of temperature on the mechanical properties of hybrid FRP bars applicable for the reinforcing of concrete structures”, MATEC Web of Conferences, vol. 322, pp. 1-8, 2020, doi: 10.1051/matecconf/202032201029.
  • [13] K. Protchenko, E. Szmigiera, M. Urbański, A. Garbacz, P. L. Narloch, and P. Lesniak, “State-of-the-art on fire resistance aspects of FRP reinforcing bar”, IOP Conference Series: Materials Science and Engineering, vol. 661, pp. 1-8, 2019, doi: 10.1088/1757-899X/661/1/012081.
  • [14] A. Garbacz, E. Szmigiera, K. Protchenko, and M. Urbański, “On mechanical characteristics of HFRP bars with various types of hybridization”, in International Congress on Polymers in Concrete (ICPIC 2018): Polymers for Resilient and Sustainable Concrete Infrastructure. Springer, 2018, pp. 653-658, doi: 10.1007/978-3-319-78175-4_83.
  • [15] T. Jesionowski and R. Pilawka, „Kompozyty epoksydowe z krzemionką”, Kompozyty, no. 9, pp. 112-116, 2012.
  • [16] A.M. Hine, M.R. Huehn, K.L. Thunhorst, and P. Sedgwick, Nanosilica concentration effect on epoxy resins and filament-wound composite overwrapped pressure vessels. Diamond Bar, CA, USA: Society for the Advancement of Material and Process Engineering, 2011.
  • [17] C. Chen, R.S. Justice, D.W. Schaefer, and J.W. Baur, “Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties”, Polymer, vol. 49, no. 17 pp. 3805-3815, 2008, doi: 10.1016/j.polymer.2008.06.023.
  • [18] B. S. Keerthi Gowda, K. Naresh, S. Ilangovan, M. R. Sanjay, and S. Siengchin, “Effect of fiber volume fraction on mechanical and fire resistance properties of basalt/polyester and pineapple/polyester composites”, Journal of Natural Fibers, vol. 19, no. 13, pp. 6074-6088, 2022, doi: 10.1080/15440478.2021.1904479.
  • [19] E. Nigro, G. Cefarelli, A. Bilotta, G. Manfredi, and E. Cosenza, “Fire resistance of concrete slabs reinforced with FRP bars. Part I: Experimental investigations on the mechanical behavior”, Composites Part B: Engineering, vol. 42, no. 6, pp. 1739-1750, 2011, doi: 10.1016/j.compositesb.2011.02.025.
  • [20] V. Kodur, S. Venkatachari, P. Bhatt, V.A. Matsagar, and S.B. Singh, “Fire resistance evaluation of concrete beams and slabs incorporating natural fiber-reinforced polymers”, Polymers, vol. 15, no. 3, art. no. 755, 2023, doi: 10.3390/polym15030755.
  • [21] M.M. Rafi and A. Nadjai, “Behavior of hybrid (steel-CFRP) and CFRP bar-reinforced concrete beams in fire”, Journal of Composite Materials, vol. 45, no. 15, pp. 1573-1584, 2011, doi: 10.1177/0021998310385022.
  • [22] K. Protchenko and M. Urbański, “Full-scale fire resistance testing of concrete beams reinforced with various FRP reinforcement”, Archives of Civil Engineering, vol. 66, no. 4, pp. 119-136, 2020, doi: 10.24425/ace.2020.135212.
  • [23] ISO 834-1 Fire Resistance Tests - Elements of Buildings Construction, Part-1 General Requirements. Geneva, Switzerland: International Organization for Standardization, 1999.
  • [24] PN-EN 12390-3:2019-07 Badania betonu. Część 3: Wytrzymałość na ściskanie próbek do badań (Testing Hardened Concrete Part 3: Compressive Strength of Test Specimens). PKN, 2019 (in Polish).
  • [25] E. Szmigiera, K. Protchenko, M. Urbański, and A. Garbacz, “Mechanical properties of hybrid FRP bars and nano-hybrid FRP bars”, Archives of Civil Engineering, vol. 65, no. 1, pp. 97-110, 2019, doi: 10.2478/ace-2019-0007.
  • [26] K. Protchenko and E. Szmigiera, “Post-fire characteristics of concrete beams reinforced with hybrid FRP bars”, Materials, vol. 13, no. 5, pp. 1-15, 2020, doi: 10.3390/ma13051248.
  • [27] M. Urbański and K. Protchenko, “Compression behaviour of BFRP bars”, Archives of Civil Engineering, vol. 68, no. 3, pp. 257-271, 2022, doi: 10.24425/ace.2022.141884.
  • [28] R. Kowalski, M. Głowacki, and M. Abramowicz, “Premature destruction of two-span RC beams exposed to high temperature caused by a redistribution of shear forces”, Journal of Civil Engineering and Management, vol. 23, no. 4, pp. 431-439, 2017, doi: 10.3846/13923730.2016.1144645.
  • [29] R. Kowalski, M. Głowacki, and J. Wróblewska, “Thermal bowing of reinforced concrete elements exposed to non-uniform heating”, Archives of Civil Engineering, vol. 64, no. 4, pp. 247-264, 2018, doi: 10.2478/ace- 2018-0055.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0ebd73d0-aef0-4263-8e8c-3356bd92169d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.