Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 39, No. 4 | 615--625
Tytuł artykułu

Decomposition mechanisms of continuously cooled bainitic rail in the critical heat-affected zone of a flash-butt welded joints

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The joining process of bainitic rails is significant in terms of their industrialization in high-speed and heavy-loaded railways. This paper demonstrates the microstructure changes in the critical zone of the welded joint, which is responsible for the greatest deterioration in mechanical properties. Extensive progress in the decomposition of the retained austenite and bainitic ferrite occurs in the low-temperature heat-affected zone (LTHAZ) of the flash-butt welded joint of low-carbon bainitic rail. The decomposition products of the retained austenite were mainly a mixture of cementite and ferrite. The cementite was mainly precipitated at the boundary of the bainitic ferrite laths, which indicates lower thermal stability of the filmy austenite. Moreover, it was found that a part of the refined blocky retained austenite was decomposed into the ferrite and nanometric cementite, while another remained in the structure. The decomposition mechanisms are rather heterogeneous with varying degrees of decomposition. A relatively high proportion of dislocations and stress fields prove the occurrence of residual stresses formed during the welding process.
Wydawca

Rocznik
Strony
615--625
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland, aleksandra.krolicka@pwr.edu.pl
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370Wroclaw, Poland
  • Łukasiewicz Research Network – Institute for Ferrous Metallurgy, K. Miarki 12-14, 44-100 Gliwice, Poland
  • Łukasiewicz Research Network – Institute for Ferrous Metallurgy, K. Miarki 12-14, 44-100 Gliwice, Poland
  • Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] Hasan SM, Ghosh M, Chakrabarti D, Singh SB. Development of continuously cooled low-carbon, low-alloy, high strength carbide-free bainitic rail steels. Mater Sci Eng A. 2020;771:138590. https://doi.org/10.1016/j.msea.2019.138590
  • [2] Liu JP, Li YQ, Jin J, Zhang YH, Liu FS, Su R, et al. Effect of processing techniques on microstructure and mechanical properties of carbide-free bainitic rail steels. Mater Today Commun. 2020;25:101531. https://doi.org/10.1016/j.mtcomm.2020.101531
  • [3] Milenin A, Zalecki W, Pernach M, Rauch Ł, Kuziak R, Zygmunt T, et al. Numerical simulation of manufacturing process chain for pearlitic and bainitic steel rails. Arch Civ Mech Eng. 2020;20:107. https://doi.org/10.1007/s43452-020-00107-0
  • [4] Adamczyk-Cieślak B, Koralnik M, Kuziak R, Majchrowicz K, Zygmunt T, Mizera J. The impact of retained austenite on the mechanical properties of bainitic and dual phase steels. J Mater Eng Perform. 2022:1–5. https://doi.org/10.1007/s11665-021-06547-w
  • [5] Chen Y, Ren R, Zhao X, Chen C, Pan R. Study on the surface microstructure evolution and wear property of bainitic rail steel under dry sliding wear. Wear. 2020; 448–449:203217. https://doi.org/10.1016/j.wear.2020.203217
  • [6] Hu Y, Guo LC, Maiorino M, Liu JP, Ding HH, Lewis R, et al. Comparison of wear and rolling contact fatigue behaviours of bainitic and pearlitic rails under various rolling-sliding conditions. Wear. 2020;460–461:203455. https://doi.org/10.1016/j.wear.2020.203455
  • [7] Adamczyk-Cieślak B, Koralnik M, Kuziak R, Brynk T, Zygmunt T, Mizera J. Low-cycle fatigue behaviour and microstructural evolution of pearlitic and bainitic steels. Mater Sci Eng A. 2019;747:144–53. https://doi.org/10.1016/j.msea.2019.01.043
  • [8] Królicka A, Lesiuk G, Radwański K, Kuziak R, Janik A, Mech R, et al. Comparison of fatigue crack growth rate: pearlitic rail versus bainitic rail. Int J Fatigue. 2021:106280. https://doi.org/10.1016/j.ijfatigue.2021.106280
  • [9] Królicka A, Radwański K, Kuziak R, Zygmunt T, Ambroziak A. Microstructure-based approach to the evaluation of welded joints of bainitic rails designed for high-speed railways. J Constr Steel Res. 2020;175. https://doi.org/10.1016/j.jcsr.2020.106372
  • [10] Morawiec M, Kik T, Stano S, Różański M, Grajcar A. Numerical simulation and experimental analysis of thermal cycles and phase transformation behavior of laser-welded advanced multiphase steel. Symmetry (Basel). 2022;14:477. https://doi.org/10.3390/sym14030477
  • [11] Fang K, Yang JG, Liu XS, Song KJ, Fang HY, Bhadeshia HKDH. Regeneration technique for welding nanostructured bainite. Mater Des. 2013;50:38–43. https://doi.org/10.1016/j.matdes.2013.02.019
  • [12] Królicka A, Radwański K, Janik A, Kustroń P, Ambroziak A. Metallurgical characterization of welded joint of nanostructured bainite: regeneration technique versus post welding heat treatment. Materials (Basel). 2020;13(21), 4841. https://doi.org/10.3390/ma13214841
  • [13] Wang L, Speer JG. Quenching and partitioning steel heat treatment. Metallogr Microstruct Anal. 2013;2:268–81. https://doi.org/10.1007/s13632-013-0082-8
  • [14] Withers PJ, Bhadeshia HKDH. Residual stress part 2 – Nature and origins. Mater Sci Technol. 2001;17:366–75. https://doi.org/10.1179/026708301101510087
  • [15] Hensel J, Nitschke-Pagel T, Dilger K. On welding residual stresses near fatigue crack tips. Adv Mater Res. 2014;996:801–7. https://doi.org/10.4028/www.scientific.net/AMR.996.801
  • [16] Nitschke-Pagel T, Wohlfahrt H. Residual stresses in welded joints – sources and consequences. Mater Sci Forum. 2002;404–407:215–26. https://doi.org/10.4028/www.scientific.net/MSF.404-407.215
  • [17] Zhang K, Dong W, Lu S. Finite element and experiment analysis of welding residual stress in S355J2 steel considering the bainite transformation. J Manuf Process. 2021;62:80–9. https://doi.org/10.1016/j.jmapro.2020.12.029
  • [18] Suikkanen PP, Cayron C, DeArdo AJ, Karjalainen LP. Crystallographic analysis of isothermally transformed bainite in 0.2C-2.0Mn-1.5Si-0.6Cr steel using EBSD. J Mater Sci Technol. 2013;29:359–66. https://doi.org/10.1016/j.jmst.2013.01.015
  • [19] Caballero FG, Miller MK, Garcia-Mateo C. The approach to equilibrium during tempering of a bulk nanocrystalline steel: an atom probe investigation. J Mater Sci. 2008;43:3769–74. https://doi.org/10.1007/s10853-007-2157-x
  • [20] Królicka A, Ambroziak A, Żak A. Welding capabilities of nanostructured carbide-free bainite: review of welding methods, materials, problems, and perspectives. Appl Sci. 2019;9:3798. https://doi.org/10.3390/app9183798
  • [21] Ruiz-Jimenez V, Kuntz M, Sourmail T, Caballero FG, Jimenez JA, Garcia-Mateo C. Retained austenite destabilization during tempering of low-temperature bainite. Appl Sci. 2020;10:8901. https://doi.org/10.3390/app10248901
  • [22] Garcia-Mateo C, Peet M, Caballero FG, Bhadeshia HKDH. Tempering of hard mixture of bainitic ferrite and austenite. Mater Sci Technol. 2004;20:814–8. https://doi.org/10.1179/026708304225017355
  • [23] Sourmail T, Otter L, Collin S, Billet M, Philippot A, Cristofari F, et al. Direct and indirect decomposition of retained austenite in continuously cooled bainitic steels: influence of vanadium. Mater Charact. 2021;173:110922. https://doi.org/10.1016/j.matchar.2021.110922
  • [24] Fang K, Yang JG, Song KJ, Liu XS, Wang JJ, Fang HY. Study on tempered zone in nanostructured bainitic steel welded joints with regeneration. Sci Technol Weld Join. 2014;19:572–7. https://doi.org/10.1179/1362171814y.0000000227
  • [25] Saha-Podder A. Tempering of a mixture of bainite and retained austenite. University of Cambridge; 2011.
  • [26] Caballero FG, Miller MK, Clarke AJ, Garcia-Mateo C. Examination of carbon partitioning into austenite during tempering of bainite. Scr Mater. 2010;63:442–5. https://doi.org/10.1016/j.scriptamat.2010.04.049
  • [27] Hulme-Smith CN, Lonardelli I, Peet MJ, Dippel AC, Bhadeshia HKDH. Enhanced thermal stability in nanostructured bainitic steel. Scr Mater. 2013;69:191–4. https://doi.org/10.1016/j.scriptamat.2013.03.029
  • [28] Caballero FG, Miller MK, Garcia-Mateo C, Capdevila C, Babu SS. Redistribution of alloying elements during tempering of a nanocrystalline steel. Acta Mater. 2008;56:188–99. https://doi.org/10.1016/j.actamat.2007.09.018
  • [29] Grajcar A, Morawiec M, Różański M, Stano S. Twin-spot laser welding of advanced high-strength multiphase microstructure steel. Opt Laser Technol. 2017;92:52–61. https://doi.org/10.1016/j.optlastec.2017.01.011
  • [30] Królicka A, Żak AM, Caballero FG. Enhancing technological prospect of nanostructured bainitic steels by the control of thermal stability of austenite. Mater Des. 2021;211:110143. https://doi.org/10.1016/j.matdes.2021.110143
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0e0644ce-872c-4ad3-928a-60ce61129af8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.