Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2018 | Vol. 66, no. 5 | 1131--1150
Tytuł artykułu

Forecasting daily flow rate-based intelligent hybrid models combining wavelet and Hilbert–Huang transforms in the mediterranean basin in northern Algeria

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The modelling of the rainfall–runoff relationship plays an important role in risk reduction and prevention against water-related disasters and in water resources management. In this research, we have modelled the rainfall–runoff relationship using intelligent hybrid models for forecasting daily flow rates of the Sebaou basin located in northern Algeria. As such, two hybrid approaches of artificial intelligence have been used in this study. These approaches are based on the adaptive neuro-fuzzy inference system combined with hydrological signal decomposition techniques. The first is derived from the Hilbert–Huang transform called the empirical mode decomposition and the other is derived from the discrete wavelet transform called multiresolution analysis. The results obtained seem to be very encouraging and the techniques appear promising. The performances of the hybrid models are relatively much higher than the other models used for comparison in this study. Although the technique of parallel computing has been used and despite the power of the computing station, the relatively long computation time is the main disadvantage of these models.
Wydawca

Czasopismo
Rocznik
Strony
1131--1150
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
autor
  • Research Laboratory of Water Resources, Soil and Environment, Civil Engineering Department Amar Telidji University Laghouat Algeria
autor
  • Research Laboratory of Water Resources, Soil and Environment, Civil Engineering Department Amar Telidji University Laghouat Algeria, m.chettih@lagh-univ.dz
Bibliografia
  • 1. Akrami SA, El-Shafie A, Jaafar O (2013) Improving rainfall forecasting efficiency using modified adaptive Neuro-Fuzzy Inference System (MANFIS). Water Resour Manag 27(9):3507–3523. https://doi.org/10.1007/s11269-013-0361-9
  • 2. Awan JA, Bae DH (2014) Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall forecasts. Water Resour Manag 28(5):1185–1199. https://doi.org/10.1007/s11269-014-0512-7
  • 3. Badrzadeh H, Sarukkalige R, Jayawardena AW (2015) Hourly runoff forecasting for flood risk management: application of various computational intelligence models. J Hydrol 529:1633–1643. https://doi.org/10.1016/j.jhydrol.2015.07.057
  • 4. Beven KJ (2000) Uniqueness of place and process representations in hydrological modelling. Hydrol Earth Sys Sci Discuss 4(2):203–213
  • 5. Brunet Y, Collineau S (1995) Wavelet Analysis of diurnal and nocturnal turbulence above a maize crop. Wavelets Geophys 10:129–150
  • 6. Chandwani V, Vyas SK, Agrawal V, Sharma G (2015) Soft computing approach for rainfall-runoff modelling: a review. Aqua Procedia 4:1054–1061. https://doi.org/10.1016/j.aqpro.2015.02.133
  • 7. Crawford NH, Linsley RK (1966) Digital simulation in hydrology: Stanford watershed model IV. Technical Report No39, Stanford University, Department of Civil Engineering, Palo Alto, CA, USA 94305
  • 8. Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia, Pa, USA. https://doi.org/10.1137/1.9781611970104.fm
  • 9. Doroszkiewicz J, Romanowicz RJ (2017) Guidelines for the adaptation to floods in changing climate. Acta Geophys 65(4):849–861. https://doi.org/10.1007/s11600-017-0050-9
  • 10. Flandrin P, Gonçalvès P (2004) Empirical mode decompositions as data-driven wavelet-like expansions. Int J Wavelets Multiresolut Info Process 2(4):477–496. https://doi.org/10.1142/S0219691304000561
  • 11. Gautam D, Holz KP (2001) Rainfall-runoff modelling using adaptive neuro-fuzzy systems. J Hydroinf 3(1):3–10
  • 12. Giarratano JC, Riley G (1994) Expert systems: principles and programming. PWS Publishing, Boston
  • 13. Hauduc H, Neumann MB, Muschalla D, Gamerith V, Gillot S, Vanrolleghem PA (2015) Efficiency criteria for environmental model quality assessment: a review and its application to wastewater treatment. Environ Modell Soft 68:196–204. https://doi.org/10.1016/j.envsoft.2015.02.004
  • 14. Holschneider M (1995) Wavelets: an analysis tool. Clarendon Press, Oxford
  • 15. Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A Math Phys Eng Sci 454:903–955. https://doi.org/10.1098/rspa.1998.0193
  • 16. Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech 31(1):417–457. https://doi.org/10.1146/annurev.fluid.31.1.417
  • 17. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685. https://doi.org/10.1109/21.256541
  • 18. Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE 83(3):378–406. https://doi.org/10.1109/5.364486
  • 19. Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle Silver
  • 20. Jawerth B, Sweldens W (1994) An overview of the theory and applications of wavelets. In: Toet A, Foster D et al (eds) O YL, vol 126. Shape in picture, NATO ASI Series (Series F: Computer and Systems Sciences), Springer, Berlin pp, pp 249–274
  • 21. Jodouin JF (1994) Les Réseaux Neuromimétiques: Modèles et applications. Editions Hermès, Paris
  • 22. Kisi O, Shiri J (2011) Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water Resour Manag 25(13):3135–3152. https://doi.org/10.1007/s11269-011-9849-3
  • 23. Kisi O, Latifoğlu L, Latifoğlu F (2014) Investigation of empirical mode decomposition in forecasting of hydrological time series. Water Resour Manag 28(12):4045–4057. https://doi.org/10.1007/s11269-014-0726-8
  • 24. Komasi M, Sharghi S (2016) Hybrid wavelet-support vector machine approach for modelling rainfall–runoff process. Water Sci Technol 73(8):1937–1953. https://doi.org/10.2166/wst.2016.048
  • 25. Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci Eur Geosci Union 5:89–97
  • 26. Kumar P, Foufoula-Georgiou E (1993) A multicomponent decomposition of spatial rainfall fields: 1. Segregation of large-and small-scale features using wavelet transforms. Water Resour Res 29(8):2515–2532. https://doi.org/10.1029/93WR00548
  • 27. Labat D (2010) Wavelet analyses in hydrology. In: Sivakumar B, Berndtsson R (eds) Advances in data-based approaches for hydrologic modeling and forecasting. World Scientific Publishing Co, Pte. Ltd, pp 371–410
  • 28. Labat D, Ababou R, Mangin A (1999) Analyse en ondelettes en hydrologie karstique. 1repartie: analyse univariée de pluies et débits de sources karstiques. Comptes Rendus de l’Academie des Sciences Series de Paris (Series IIA). Earth Planet Sci 12(329):873–879
  • 29. Labat D, Ababou R, Mangin A (2000a) Rainfall–runoff relations for karstic springs. Part I: convolution and spectral analyses. J Hydrol 238(3–4):123–148. https://doi.org/10.1016/S0022-1694(00)00321-8
  • 30. Labat D, Ababou R, Mangin A (2000b) Rainfall-runoff relation for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses. J Hydrol 238:149–178. https://doi.org/10.1016/S0022-1694(00)00322-X
  • 31. Labat D, Ronchail J, Callede J et al (2004) Wavelet analysis of Amazon hydrological regime variability. Geophys Res Lett. https://doi.org/10.1029/2003GL018741CrossRefGoogle Scholar
  • 32. Li C, Cheng KH (2007) Recurrent neuro-fuzzy hybrid-learning approach to accurate system modeling. Fuzzy Set Syst 158(2):194–212. https://doi.org/10.1016/j.fss.2006.09.002CrossRefGoogle Scholar
  • 33. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693. https://doi.org/10.1109/34.192463CrossRefGoogle Scholar
  • 34. Mandelbrot BB, Wallis JR (1968) Noah, Joseph, and operational hydrology. Water Resour Res 4(5):909–918. https://doi.org/10.1029/WR004i005p00909CrossRefGoogle Scholar
  • 35. Mehr AD, Kahya E, Olyaie E (2013) Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. J Hydrol 505:240–249. https://doi.org/10.1016/j.jhydrol.2013.10.003CrossRefGoogle Scholar
  • 36. Meyer Y (1992) Wavelets and operators. In: Cambridge studies in advanced mathematics, vol 37. Cambridge University Press, CambridgeGoogle Scholar
  • 37. Nayak PC, Sudheer KP, Jain SK (2007) Rainfall-runoff modeling through hybrid intelligent system. Water Resour Res. https://doi.org/10.1029/2006WR004930CrossRefGoogle Scholar
  • 38. Nourani V, Mano A (2007) Semi-distributed flood runoff model at the subcontinental scale for southwestern Iran. Hydrol Process 21(23):3173–3180. https://doi.org/10.1002/hyp.6549CrossRefGoogle Scholar
  • 39. Nourani V, Kisi Ö, Komasi M (2011) Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. J Hydrol 402(1–2):41–59. https://doi.org/10.1016/j.jhydrol.2011.03.002CrossRefGoogle Scholar
  • 40. Nourani V, Baghanam AH, Rahimi AY, Nejad FH (2014a) Evaluation of wavelet-based de-noising approach in hydrological models linked to artificial neural networks. In: Islam T, Srivastava PK, Gupta M et al (eds) Computational intelligence techniques in earth and environmental sciences. Springer, Dordrecht, pp 209–241CrossRefGoogle Scholar
  • 41. Nourani V, Baghanam AH, Adamowski J, Kisi O (2014b) Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. J Hydrol 514:358–377. https://doi.org/10.1016/j.jhydrol.2014.03.057CrossRefGoogle Scholar
  • 42. Oberlin T, Meignen S, Perrier V (2012) An alternative formulation for the empirical mode decomposition. IEEE Trans Signal Process 60(5):2236–2246. https://doi.org/10.1109/TSP.2012.2187202CrossRefGoogle Scholar
  • 43. Rajurkar MP, Kothyari UC, Chaube UC (2002) Artificial neural networks for daily rainfall–runoff modelling. Hydrol Sci J 47(6):865–877. https://doi.org/10.1080/02626660209492996CrossRefGoogle Scholar
  • 44. Rezaeianzadeh M, Stein M, Tabari A et al (2013) Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting. Int J Environ Sci Technol 10(6):1181–1192. https://doi.org/10.1007/s13762-013-0209-0CrossRefGoogle Scholar
  • 45. Roche PA, Miquel J, Gaume E (2012) Hydrologie quantitative: processus, modèles et aide à la décision. Springer, Berlin
  • 46. Šaletic DZ (2006) On further development of soft computing, some trends in computational intelligence. In: ISY 4th Serbian-Hungarian joint symposium on intelligent
  • 47. Sehgal V, Tiwari MK, Chatterjee C (2014) Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting. Water Resour Manag 28(10):2793–2811. https://doi.org/10.1007/s11269-014-0638-7
  • 48. Sugeno M, Kang G (1986) Fuzzy modelling and control of multilayer incinerator. Fuzzy Set Syst 18(3):329–345. https://doi.org/10.1016/0165-0114(86)90010-2
  • 49. Sun X, Qiao SF, Xie JR (2014) The study of precipitation forecast model on EMD-RBF neural network—a case study on northeast China. Appl Mech Math 641–642:119–122. https://doi.org/10.4028/www.scientific.net/AMM.641-642.119
  • 50. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC 15(1):116–132. https://doi.org/10.1109/TSMC.1985.6313399
  • 51. Tarhule A (2005) Damaging rainfall and flooding the other Sahel hazards. Clim Change 72(3):355–377. https://doi.org/10.1007/s10584-005-6792-4
  • 52. Tayfur G (2012) Soft computing in water resources engineering: artifical neural networks, fuzzy logic and genetic algorithms. WIT Press, Southampton
  • 53. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78. https://doi.org/10.1175/1520-0477(1998)
  • 54. Towell GG, Shavlik JW (1993) Extracting refined rules from knowledge-based neural networks. Mach Learn 13(1):71–101. https://doi.org/10.1007/BF00993103
  • 55. Turner B, Leclerc MY, Gauthier M, Moore KE, Fitzjarrald DR (1994) Identification of turbulence structures above a forest canopy using a wavelet transform. J Geophys Res: Atmos 99(D1):1919–1926. https://doi.org/10.1029/93JD02260
  • 56. Wang WQ, Golnaraghi MF, Ismail F (2004) Prognosis of machine health condition using neuro-fuzzy systems. Mech Syst Signal Process 18(4):813–831. https://doi.org/10.1016/S0888-3270(03)00079-7
  • 57. X-h Zhao, Chen X (2015) Auto regressive and ensemble empirical mode decomposition hybrid model for annual runoff forecasting. Water Resour Manag 29(8):2913–2926. https://doi.org/10.1007/s11269-015-0977-z
  • 58. Yam RCM, Tse PW, Li L, Tu P (2001) Intelligent predictive decision support system for condition-based maintenance. Int J Adv Manuf Technol 17(5):383–391. https://doi.org/10.1007/s001700170173
  • 59. Yarar A (2014) A hybrid wavelet and neuro-fuzzy model for forecasting the monthly streamflow data. Water Resour Manag 28(2):553–565. https://doi.org/10.1007/s11269-013-0502-1
  • 60. Zhu S, Zhou J, Ye L, Meng C (2016) Streamflow estimation by support vector machine coupled with different methods of time series decomposition in the upper reaches of Yangtze River, China. Environ Earth Sci 75:531. https://doi.org/10.1007/s12665-016-5337-7
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0dc5cf59-c7f1-4fb1-814b-a757a964f915
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.