Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 13, no. 1 | 45--56
Tytuł artykułu

Numerical verification of the limit load solutions for single edge notch specimen in tension

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the verification of the limit load solutions proposed by EPRI procedures for single edge notched plate under tension (SEN(T)) is presented. For the concept of limit load of the component containing a crack, the force (or torque or pressure) which causes a full plasticity of the uncracked ligament of the structural component must be understood. It should be noted that the value of the limit load is determined under the assumption of elastic–perfectly plastic material. Numerical calculations presented in the paper (FEM) and analysis of the obtained FEM results were used to recalculate existing limit load formulas proposed by EPRI procedures for plane strain and plane stress states. On the basis of numerical calculations and verifications of the present solutions (EPRI solutions), in the paper new analytical formulas for better estimating the limit load value for SEN(T) specimen are presented. The measurable effect of the paper is a catalog of the numerical solutions and their approximation, which may be useful in engineering analysis.
Wydawca

Rocznik
Strony
45--56
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Kielce University of Technology, Faculty of Mechatronics and Machine Design, Chair of Fundamentals of Machine Design, Al. 1000-leciaPP7, 25-314 Kielce, Poland, mgraba@tu.kielce.pl
Bibliografia
  • [1] V. Kumar, M.D. German, C.F. Shih, An engineering approach for elastic–plastic fracture analysis, Electric Power Research Institute, Inc., Palo Alto, CA, 1981 EPRI Report NP-1931.
  • [2] J.R. Rice, Elastic–plastic models for stable crack growth, in: M.J. May (Ed.), Mechanics and Mechanism of Crack Growth, Proceedings at Cambridge, England, April 1973, British Steel Corporation Physical Metallurgy Centre Publication, 1975, pp. 14–39.
  • [3] J.R. Rice, in: H. Liebowitz (Ed.), Mathematical Analysis in the Mechanics of Fracture, in Fracture, vol. II, Academic Press, NY, 1968, pp. 191–311.
  • [4] J.A. Begley, J.D. Landes, The J-integral as a fracture criterion in fracture toughness testing, in: Fracture Toughness ASTM Special Technical Publication 514, 1972, pp. 1–39.
  • [5] J.R. Rice, P.C. Paris, J.G. Merkle, Some further results on J-integral analysis and estimates, in: Progress in Flaw Growth and Fracture Toughness Testing ASTM Special Technical Publication 536, 1973, pp. 231–245.
  • [6] P.C. Paris, H. Tada, A. Zahoor, H. Ernst, The theory of instability of the tearing mode of elastic-plastic crack growth, in: Elastic-Plastic Fracture ASTM Special Technical Publication 668, 1979, pp. 5–36; 251–265.
  • [7] J.W. Hutchinson, Singular behavior at end of tensile crack in hardening material, Journal of the Mechanics and Physics of Solids 16 (1) (1968) 13–31.
  • [8] C.F. Shih, J-integral estimates for strain hardening materials in antiplane shear using fully plastic solutions, in: Mechanics of Crack Growth, ASTM Special Technical Publication 590, 1976, pp. 3–22.
  • [9] C.F. Shih, H.G. deLorenzi, W.R. Andrews, Studies on crack initiation and stable crack growth, in: Elastic-Plastic Fracture ASTM Special Technical Publication 668, 1979, pp. 65–120.
  • [10] C.F. Shih, Relationship between the J-integral and the crack opening displacement for stationary and extending cracks, Journal of the Mechanics and Physics of Solids 29 (1981) 305–329.
  • [11] R.J. Bucci, P.C. Paris, J.D. Landes, J.R. Rice, J-integral estimation procedures, in fracture toughness, ASTM Special Technical Publication 514 (1972) 40–69.
  • [12] J.R. Rice, G.F. Rosengren, Plane strain deformation near crack tip in power-law hardening material, Journal of the Mechanics and Physics of Solids 16 (1) (1968) 1–12.
  • [13] J.W. Hutchinson, P.C. Paris, Stability analysis of J-controlled crack growth, in elastic–plastic fracture, ASTM Special Technical Publication 668 (1979) 37–64.
  • [14] J.R. Rice, A. Path, Independent Integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics 35 (1968) 379–386.
  • [15] W. Ramberg, W.R. Osgood, Description of stress–strain curves by three parameters, Technical Note no. 902, National Advisory Committee for Aeronautics, Washington, DC, 1943.
  • [16] J. Gałkiewicz, M. Graba, Algorithm for determination functions in Hutchinson–Rice–Rosengren Solution and its 3d generalization, Journal of Theoretical and Applied Mechanics 44 (1) (2006) 19–30.
  • [17] C.F. Shih, J.W. Hutchinson, Fully plastic solutions and large-scale yielding estimates for plane stress crack problems, Transactions of ASME Journal of Engineering Materials and Technology, Series H 98 (4) (1976) 289–295.
  • [18] R5—Issue 2, An Assessment Procedure for the High Temperature Response of Structures, British Energy Generation Ltd., 1998.
  • [19] R6, Assessment of the Integrity of Structures Containing Defects, Rev. 4, Gloucester: British Energy Generation Ltd., UK, 2001.
  • [20] D.P. Rooke, J.C. Cartwright, Compendium of Stress Intensity Factors, Her Majesty’s Stationary Office, London, 1976.
  • [21] H. Tada, P.C. Paris, G.R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, Pennsylvania, 1973.
  • [22] A.A. Ilyushin, The theory of small elastic–plastic deformations, Prikadnaia Matematika i Mekhanika, P.M.M 10 (1946) 347.
  • [23] N.L. Goldman, J.W. Hutchinson, Fully plastic crack problems: the center-cracked strip under plane strain, International Journal of Solids and Structures 11 (1975) 575–591.
  • [24] FITNET Report, European Fitness-for-service Network, in: M. Kocak, S. Webster, J.J. Janosch, R.A. Ainsworth, R. Koers (Eds.), Contract no. G1RT-CT-2001-05071, 2006.
  • [25] SINTAP: Structural Integrity Assessment Procedures for European Industry. Final Procedure, Brite-Euram Project no. BE95-1426. British Steel, Rotherham, 1999.
  • [26] N.P. O’Dowd, C.F. Shih, Family of crack-tip fields characterized by a triaxiality parameter—I. Structure of fields, Journal of the Mechanics and Physics of Solids 39 (8) (1991) 989–1015.
  • [27] N.P. O’Dowd, C.F. Shih, Family of crack-tip fields characterized by a triaxiality parameter —II. Fracture applications, Journal of the Mechanics and Physics of Solids 40 (5) (1992) 939–963.
  • [28] M. Graba, The influence of material properties and crack length on the Q-stress value near the crack tip for elastic–plastic materials for single edge notch plate in tension, Archives of Civil and Mechanical Engineering XI (2) (2011) 301–319.
  • [29] A. Neimitz, I. Dzioba, J. Gałkiewicz, R. Molasy, A study of stable crack growth using experimental methods, finite elements and fractography, Engineering Fracture Mechanics 71 (2004) 1325–1355.
  • [30] ASTM E 1820-05 Standard Test Method for Measurement of Fracture Toughness, American Society for Testing and Materials, 2005.
  • [31] ADINA 8.5.4: ADINA: Theory and Modeling Guide - Volume I: ADINA, Report ARD 08-7, ADINA R&D, Inc., 2008.
  • [32] ADINA 8.5.4: ADINA: User Interface Command Reference Manual, volume I: ADINA Solids & Structures Model Definition, Report ARD 08-6, ADINA R&D, Inc., 2008.
  • [33] W. Brocks, A. Cornec, I. Scheider, Computational Aspects of Nonlinear Fracture Mechanics, Bruchmechanik, GKSS-Forschungszentrum, Elsevier, Geesthacht, Germany, 2003, pp. 127–209.
  • [34] W. Brocks, I. Scheider, Reliable J-Values. Numerical Aspects of the Path-Dependence of the J-integral in Incremental Plasticity, Bruchmechanik, GKSS-Forschungszentrum, Elsevier, Geesthacht, Germany, 2003, pp. 127–209.
  • [35] http://en.wikipedia.org/wiki/Ramberg%E2%80%93Osgood_relationship.
  • [36] http://www.sciencedirect.com/science/article/pii/S0020746202000252.
  • [37] http://www.scielo.br/scielo.php?scriptsci_arttext&pids1516-14392005000400013.
  • [38] http://resource.npl.co.uk/docs/science_technology/materials/measurement_techniques/uncert/cop17.pdf.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0d8f91c8-7439-4698-8675-8b653355f25b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.