Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 54, nr 1 | 318--325
Tytuł artykułu

Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let be a complex Hilbert space and B(H) denotes the algebra of all bounded linear operators acting on H. In this paper, we present some new pairs of generalized finite operators. More precisely, new pairs of operators (A, B) ∈ B(H) × B(H) satisfying: ∥ AX – XB − I∥ ≥ 1, for all X ∈ B(H). An example under which the class of such operators is not invariant under similarity orbit is given. Range kernel orthogonality of generalized derivation is also studied.
Wydawca

Rocznik
Strony
318--325
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Department of Mathematics and Computer Science, Laboratory of Mathematics, Informatics and Systems (LAMIS), Larbi Tebessi University, Tebessa, Algeria, nadia.mesbah@univ-tebessa.dz
  • Faculty of Economics Sciences and Management, Laboratory of Mathematics, Informatics and Systems (LAMIS), Larbi Tebessi University, Tebessa, Algeria, hadia.messaoudene@univ-tebessa.dz
  • Department of Mathematics, College of Sciences and Arts, Ar Rass, Qassim University, Saudi Arabia , ao.alharbi@qu.edu.sa
Bibliografia
  • [1] J. P. Williams, Finite operators, Proc. Amer. Math. Soc. 26 (1970), no. 1, 129–135, DOI: https://doi.org/10.1090/S0002-9939-1970-0264445-6.
  • [2] S. Mecheri, Finite operators, Demonstr. Math. 35 (2002), no. 2, 357–366, DOI: https://doi.org/10.1515/dema-2002-0216.
  • [3] H. Messaoudene, Finite operators, J. Math. Syst. Sci. 3 (2013), no. 4, 190–194.
  • [4] H. Wielandt, Über die Unbeschränktheit der Operatoren der Quantenmechanik, Math. Ann. 121 (1949), no. 1, 21, DOI: https://doi.org/10.1007/BF01329611 (in German).
  • [5] P. J. Maher, Self commutator approximants, Proc. Amer. Math. Soc. 134 (2006), no. 1, 157–165, DOI: https://doi.org/10.1090/S0002-9939-05-07871-8.
  • [6] S. Mecheri, Generalized finite operators, Demonstr. Math. 38 (2005), no. 1, 163–167, DOI: https://doi.org/10.1515/dema-2005-0118.
  • [7] S. Bouzenada, Generalized finite operators and orthogonality, SUT J. Math. 47 (2011), no. 1, 15-23, DOI: http://doi.org/10.20604/00000977.
  • [8] J. H. Anderson and C. Foais, Properties which normal operators share with normal derivation and related operators, Pacific J. Math. 61 (1975), no. 2, 313–325, DOI: http://doi.org/10.2140/pjm.1975.61.313.
  • [9] J. H. Anderson, On normal derivation, Proc. Amer. Math. Soc. 38 (1973), no. 1, 136–140, DOI: http://doi.org/10.1090/S0002-9939-1973-0312313-6.
  • [10] A. Bachir and A. Segres, Generalized Fuglede-Putnamas theorem and orthogonality, AJMAA 1 (2004), 1-5.
  • [11] B. P. Duggal, Putnam-Fuglede theorem and the range-kernel orthogonality of derivations, Int. J. Math. Math. Sci. 27 (2001), no. 9, 573–582, DOI: http://doi.org/10.1155/S0161171201006159.
  • [12] S. Mecheri and A. Toualbia, Range kernel orthogonality and finite operators, Kyungpook Math. J. 55 (2015), no. 1, 63–71, DOI: https://doi.org/10.5666/KMJ.2015.55.1.63.
  • [13] N. B. Okelo, J. O. Agure and P. O. Oleche, Various notions of orthogonality in normed spaces, Acta Math. Sci. 33 (2013), no. 5, 1387–1397, DOI: https://doi.org/10.1016/S0252-9602(13)60090-9.
  • [14] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tohoku Math. J. 20 (1968), no. 4, 417–424, DOI: http://doi.org/10.2748/tmj/1178243070.
  • [15] P. R. Halmos, A Hilbert Space Problem Book, 2nd edition, Springer-Verlag, New York, 1962.
  • [16] N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory, A Wiley-Interscience Publication, New York, 1958.
  • [17] S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), no. 1, 111–114, DOI: http://doi.org/10.1090/S0002-9939-1962-0133690-8.
  • [18] B. Fuglede, A commutativity theorem for normal operators, Proc. Natl. Acad. Sci. USA 36 (1950), no. 1, 35–40, DOI: https://doi.org/10.1073/pnas.36.1.35.
  • [19] A. N. Bakir and S. Mecheri, Another version of Fuglede-Putnam theorem, Georgian Math. J. 16 (2009), no. 3, 427–433, DOI: https://doi.org/10.1515/GMJ.2009.427.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0d6a7941-0759-4293-8451-9428ffd035df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.