Czasopismo
2015
|
Vol. 63, no. 3
|
227--235
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Let f be an analytic function on the unit disk D. We define a generalized Hilbert-type operator Ha, b by Ha, b (f)(z) = [WZÓR], where a and b are non-negative real numbers. In particular, for a=b=β, Ha, b becomes the generalized Hilbert operator Hβ, and β=0 gives the classical Hilbert operator H. In this article, we find conditions on a and b such that Ha, b is bounded on Dirichlet-type spaces Sp, 0 < p < 2, and on Bergman spaces Ap, 2 < p < ∞. Also we find an upper bound for the norm of the operator Ha, b. These generalize some results of E. Diamantopolous (2004) and S. Li (2009).
Rocznik
Tom
Strony
227--235
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Department of Applied Sciences, Gauhati University, Guwahati 781-014, India, spn20@yahoo.com
autor
- Department of Applied Sciences, Gauhati University, Guwahati 781-014, India, karabi26@gmail.com
Bibliografia
- [D] E. Diamantopolous, Hilbert matrix on Bergman spaces, Illinois J. Math. 48 (2004), 1067–1078.
- [DS] E. Diamantopolous and A. Siskakis, Composition operators and the Hilbert matrix, Studia Math. 140 (2000), 191–198.
- [DJV] M. Dostanič, M. Jevtič and D. Vukotič, Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type, J. Funct. Anal. 254 (2008), 2800–2815.
- [DS1] P. L. Duren and A. P. Schuster, Bergman Spaces, Math. Surveys Monogr. 100, Amer. Math. Soc., Providence, RI, 2004.
- [HLP] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, 1988.
- [L] S. Li, Generalized Hilbert operator on Dirichlet-type space, Appl. Math. Comput. 214 (2009), 304–309.
- [LS] S. Li and S. Stevič, Generalized Hilbert operator and Fejér–Riesz type inequalities on the polydisc, Acta Math. Sci. Ser. B 29 (2009), 191–200.
- [S] A. Shields, Weighted shift operators and analytic function theory, in: Topics in Operator Theory, Math. Surveys 13, Amer. Math. Soc., Providence, RI, 1974, 49–128.
- [SS] S. Stevič, Hilbert operator on the polydisc, Bull. Inst. Math. Acad. Sinica 31 (2003), 135–142.
- [Z1] X. Zhu, A class of integral operators on weighted Bergman spaces with a small parameter, Indian J. Math. 50 (2008), 381–388.
- [Z2] K. Zhu, Operator Theory in Function Spaces, 2nd ed., Math. Surveys Monogr. 138, Amer. Math. Soc., Providence, RI, 2007.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0d656338-178b-48d0-9bd2-5b070979d141