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Abstract  
 

In this work, we calculate the exact instantaneous and average availabilities for a system in which the 
failure distribution is a gamma distribution with a rational shape parameter , and the repair time 
distribution is exponential. Various regimes exist, for which the availabilities may or may not attain 
values below the asymptotic limit. This is an example of configurations where using the steady-state 
value may lead to an overoptimistic assessment of the availability of an equipment or system during its 
mission time. 
 
1. Introduction  
 

The availability of a repairable component is usu-
ally given by the ratio MTTF/(MTTF + MTTR), 
where MTTF is the Mean Time To Failure, and 
MTTR is the Mean Time To Repair (Henley & 
Kumamoto, 1991; Kuo & Zuo, 2003; Rausand & 

 Pham, 2006). The advantage of 
this expression lies in the ease of its computation 
for many lifetime and repair distributions. It is 
customary to consider the specific case of expo-
nential failure and repair time distributions (we 
shall come back to this configuration in Section 
2.2) for which calculations are easy, assuming as 
good as new repairs. In this case, the availability 
decreases monotonously from 1 to its steady-state 
value, which is a lower bound. 
The assumption of exponential distributions for 
both failures and repairs has long been questioned. 
The availability for various pairs of distributions 
has been investigated, sometimes analytically, 
more frequently numerically. A large body of 
work has been devoted to confidence limits or 
bounds on the steady-state availability (Chandra-
sekhar & Natarajan, 1996, 1997; Butterworth & 
Nikolaisen, 1973; Zeiler et al., 2017) for a number 

of distributions (gamma, lognormal, Weibull, In-
verse Gaussian, etc.). Few analytical results are 
available (Pham-Gia & Turkkan, 1999; Sarkar & 
Chaudhuri, 1999; Tillman et al., 1983; Tanguy et 
al., 2019), mostly in the case when one or both ex-
ponential distributions have been replaced by 
gamma distributions. The case of a constant repair 
time has also been considered, for instance by 
Butterworth and Nikolaisen (1973), and Rausand 

 Simulations are often the 
-Kadi, 

2010; Rao & Naikan, 2015; and references 
therein). 
In a few instances (Butterworth & Nikolaisen, 
1973; Pham-Gia & Turkkan, 1999; Zeiler et al., 
2017), curves or tabulated values clearly show 
that the availability, starting from 1 at the time 
origin, reaches values below the asymptotic, 
steady-state limit. This feature is important, since 
it means that during its mission time, 
availability may be smaller than the steady-state 
value, which is not a lower bound, and therefore 
cannot be considered as a conservative estimate of 
the availability anymore. Overestimating the 
availabilities of its elements could well lead to 
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availability. 
Recent studies on transient availabilities in cluster 
configurations and communication channels 
(Distefano et al., 2010; Carnevali et al., 2015) 
have shown that their behaviours can be very dif-
ferent: (i) the limit may be attained after a few 
MTTF (ii) oscillations can be observed, and the 
asymptotic value is not a lower bound anymore. 
Similar strong oscillations of  have also ap-
peared in various studies (Zeiler et al., 2017). In 
Figure (3c) of (Carnevali et al., 2015), a conserva-
tive approximation of the availability, computed 
using stochastic Time Petri Nets (sTPN), is de-
fined by a 3-step function. The steady-state una-
vailability underestimates the transitory one by a 
factor larger than 3. Figure 4 of (Distefano et al., 
2010) shows that the steady-state unavailability 
can be more than a factor two smaller than the 
transitory one. 
Even though availability oscillations have been 
demonstrated in the above-mentioned studies, 
they do not seem to have attracted the attention 
they deserve. In a previous work, we proposed cri-
teria allowing to determine whether the minimum, 
transitory availability is smaller than the steady-
state value for general failure and repair distribu-
tions (Tanguy, 2020). In such cases, caution 
should be exercised when using the 
MTTF/(MTTF + MTTR) formula. 
The aim of the present work is to generalize pre-
vious studies for a gamma failure time distribution 
and an exponential repair time distribution (Sarkar 
& Chaudhuri, 1999; Tillman et al., 1983; Tanguy 
et al., 2019), in which the shape parameter of the 
gamma distribution is not merely an integer, but 
can be a rational number. We also investigate the 
case of the average availability considered by 
Pham-Gia and Turkkan (1999), who computed it 
by numerically solving integral equations. The 
underlying reason of our study is to ascertain 
whether the time averaging of the availability be-
tween 0 and  can somehow smooth out the oscil-
lations, so that the averaged availability remains 
larger than the steady-state value. This might 
have economic consequences in the design of Ser-
vice Level Agreements (SLA), in which service 
warranties are sold at a premium. Since decreas-
ing the unavailability of components of a system 
is often costly, considering an average availability 
instead of the instantaneous one may lead to im-
portant cost savings for manufacturers and service 
providers. 

The chapter is organized as follows. Notations and 
definitions are recalled in Section 2. The exact ex-
pression of the instantaneous availability  is 
derived analytically in Section 3, when the shape 
parameter  of the failure time gamma distribu-
tion is a rational number. Section 4 is devoted to 
the determination of the average availability  
in the same conditions. We then survey in  
Section 5 the different regimes for the pair of 
availabilities as a function of . In Section 6, we 
adapt our criteria defined in (Tanguy, 2020) to de-
termine whether the average availability can tem-
porarily be smaller than the steady-state value.  
We then conclude by a few recommendations.  
 
2. Notations and definitions 
 

2.1. General definitions from renewal theory 
 

We use the standard description used in renewal 
theory, in which the densities of probabilities of 
failure and repair are  and , respectively. 
The reliability  is given by  
 

 (1) 
 
with . Another important quantity in 
the calculations is the Laplace transform of  (and 

), defined by 
 

. (2) 
 
An integration by parts provides 
 

. (3) 
 
An important quantity is the Mean Time To Fail-
ure (MTTF) that is found in many textbooks (Hen-
ley & Kumamoto, 1991; Kuo & Zuo, 2003; Rau-

by 
 

 (4) 
 
Similarly, the Mean Time To Repair (MTTR) is 
defined by 
 

 (5) 
 
The MTTF and MTTR are expectation values for 
lifetimes ranging from 0 to infinity. 
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Assuming that after each repair the system is as 
good as new, it is possible to compute the instan-
taneous availability  (also sometimes called 
point availability), or more exactly its Laplace 
transform  after the summation of all  
the possible histories of the system: work-
ing/failed/working/failed/working etc. Since the 
integral equations become algebraic in the La-
place transform domain,  
 

. (6) 
 
The steady-state value of the availability, noted 

, can be computed easily because the Laplace 
transform of the constant function 1 is . The 
well-known result is 
 

. (7) 
 
Another definition of the availability mentioned 
in the Introduction is the so-called average avail-
ability   a particular case of the interval 
availability of Barlow and Proschan (1996)  de-
fined by 
 

. (8) 
 
It is not difficult to show that  
 

. (9) 
 
Unfortunately, to get back to the temporal do-
main, inverse Laplace transforms are required, 
which are very tricky in the general case. This is 
possible in a few cases only, for instance when the 
failure and repair distributions are exponential, as 
will be shown in the next subsection. 
 
2.2. Exponential distributions 
 

In the case of exponential distributions with rates 
 and , we have 

 
            . (10) 

 
We deduce 
 

               (11) 
 

leading to the familiar MTTF = 1/  and  
MTTR = 1/ . The instantaneous availability 
reads, after a simple inverse Laplace transform 
 

. (12) 
 
The availability  decreases monotonously to 
its steady-state or asymptotic limit ( ), so 
that 
 

. (13) 
 
Obviously, , . In this particular case 
of exponential distributions, the average availabil-
ity is  
 

 (14) 
 
and 
 

. (15) 
 
We shall see in the following that such inequali-
ties are not always satisfied for other pairs of life-
time and repair distributions. The approaches to 
the asymptotic limit  also differ: one is expo-
nential, the other behaves as . 
 
2.3. Gamma distributions 
 

Gamma distributions (Rausand & , 2004) 
are, after exponentials, among the most often used 
distributions in reliability theory. We consider in 
the following the gamma distribution defined by 
 

 (16) 
 
where  is the so-called shape parameter, and  is 
the Euler gamma function. The definition (16) en-
sures that the MTTF is still equal to 1/ . Its La-
place transform can be computed easily: 
 

. (17) 
 
This expression can be inserted in the expression 
of , as will be done in the next subsection. 
The exponential case is recovered for  = 1. 
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2.4. Availability for gamma failure  
and exponential repair distributions  

 
 

Using (6), (11), and (17) gives 
 

. (18) 
 
When  is an integer , the denominator of  
is a polynomial, the partial fraction decomposition 
of which leads to a result of the form (Sarkar & 
Chaudhuri,1999; Tanguy et al., 2019)  
 

 (19) 
 
where  are the roots of 
 

 (20) 
 
and the  the corresponding residues. Note that 
the first term of (19) corresponds to the contribu-
tion of the special root , and that the real 
parts of the non-zero  are negative. Sarkar and 
Chaudhuri (1999) limited their study to the ex-
actly solvable cases  and , but did not 
mention that in the latter case the instantaneous 
availability can attain values smaller than the 
steady-state limit. The case  gives roots 0 
and , as expected (see (12)). 
Such a simple inversion of the Laplace transform 
as given in (19) 
integer, because the singularities of  are not 
isolated anymore. The proper derivation of  

 when  (with  and  
integers), is given in the following Section.  
 
3. Calculation of   

for  rational  
 

Equation (18) may be rewritten as  
 

 (21) 
 
where 
 

 (22) 
 

. (23) 
 
 

Since  
 

 (24) 
 
one can deduce 
 

. (25) 
 
The first term on the right-hand side of (25) can 
be inverted easily: it corresponds to the constant 1 
in the time domain. Furthermore,  
 

  
 

 (26) 
 
which is a polynomial of degree  in , the 
roots of which can be computed very simply. The 
only difficulty resides in the terms containing  
 

  
 
because  is not an integer anymore. 
At this point, we make a distinction between the 
cases  and . 
 
3.1. Case  
 

One must find the inverse Laplace transform of  
 

. (27) 

 
Calling  the roots of the denominator, the partial 
fraction decomposition of (27) provides 
 

. (28) 

 
The inverse Laplace transform of (28) gives 
 

. (29) 

 
3.2. Case  
 

In the following, let us set , so that  
. For each , one must consider  
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 (30) 
 
The trick is now to perform a partial fraction de-
composition of the terms of (30) bar the last one. 
After this decomposition, the following sum is ob-
tained 
 

.  

 

 (31) 
 

The inverse Laplace transform of  
is simply  1954) 
 

 (32) 
 
where  is the lower incomplete gamma 
function defined by 
 

 (33) 
 
3.3. Expression of  
 

Using (29), (31) and (32), one obtains the final ex-
pression of  
 

  

 

  

 

 (34) 
 
where the all the roots (including ) 
of  
 

.  (35) 
 
We recover the simple result when  is an integer 

 by setting  and , so that the sum in 
(34) vanishes. In the following, we shall set 

  (36) 

 
which are th roots of unity, i.e., . 
 
4. Calculation of  for  rational 
 

The knowledge of  enables the determination 
of . For this, the two following integrals are 
needed 
 

  
 

 (37) 
 

  
 

  
 

 (38) 
 
One may start with rewritten as  
 

  
 

 (39) 
 
with 
 

. (40) 

 
The leading 1 will remain as such in the expres-
sion of . For the remaining terms, one must 
distinguish between the root 0 and all the remain-
ing roots  in order to take advantage of (37) 
and (38). The final result reads 
 

 
 

(  

 

  

 

 .(41) 
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5. Numerical comparison of  and   
 

It has been shown previously that the behaviour of 
depends on  (Sarkar & Chaudhuri, 1999; 

Tanguy et al., 2019). Three regimes exist, and we 
shall review them in detail in this Section. We 
shall also add the variation with time of the aver-
age availability . 
 
5.1. Case  
 

The first examples are displayed in Figures 1 to 3 
for a system where  and .  
 

 
Figure 1. Variations of  and  for , 

, and . This corresponds to a pair of 
exponential distributions. 
 

 
Figure 2. Variations of  and  for ,  

, and . 
 

 
Figure 3. Variations of  and  for , 

, and . 

In each case, the instantaneous availability de-
creases monotonously with time towards its as-
ymptotic value. It is worth noting that the charac-
teristic timescale changes progressively from  
to . Furthermore, the approach to the steady-
state value is not exponential for , but follows 
a  dependence. 
 
5.2. Case  
 

When  is barely larger than 2, nothing seems to 
change (see Figure 4 for ), even though a 
minimum  is actually reached. For larger val-
ues of , the instantaneous availability exhibits 
oscillations while the average availability de-
creases smoothly (see Figure 5 for ). 
However, as  increases,  does not decrease 
monotonously anymore and displays oscillations 
as well, while remaining larger than  (see Fig-
ures 6 and 7 for  and , respec-
tively). For a threshold  slightly larger than 15, 
it is also possible to observe periods of time dur-
ing which . 
It is also worth noticing that the minimum  of 

 is reached for  . A numerical 
study indicates that, for large , 
 

  
 

 (42) 

 
and that the occurrence of the th secondary min-
ima appears for 
 

.  
 

 (43) 
 

 
Figure 4.  and  for , ,  
and . 
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Figure 5.  and  for , , and 

. 
 
On the face of these observations, one might be 
tempted to suggest to equipment manufacturers 
and service providers to turn to the average avail-
ability instead of the instantaneous one when pre-
paring Service Level Agreements (SLAs). We 
shall see that this is not always the case, however. 

 

 
Figure 6. Variations of  and  for , 

, and . 
 

 
Figure 7. Variations of  and  for , 

, and . 
 
5.3. Case  
 

5.3.1. General discussion 
 

When , the behaviour of  is quite dif-
ferent: one observes a single minimum  

. The variations with time of  and 
 are displayed in Figure 8 and Figure 9.  

 

 
 

Figure 8. Variations of  for  

(the orange curve corresponds to ), , 
and . 
 

 
Figure 9. Variations of  for  

(the orange curve corresponds to ) , , 
and . 
 
The relevant time-scale is now of order . As  
gets closer to 1,  increases too, and its posi-
tion is attained after a time that goes to infinity 
(the case of the exponential distributions). 
The behaviour of  is quite similar, even if 
slightly less pronounced. For this reason, the case 

 has been considered worth studying; the 
next subsection is devoted to this case. 
 
5.3.2. Case  
 

The special case  is worth studying because 
it can be solved analytically, which is a good op-
portunity to better understand the interplay be-
tween different parameters.  
Writing the expression of  in (18) allows to 
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use the following Laplace transform, see for in-
stance (Sneddon, 1972) 
 

  
 

  (44) 
 
where erf is the error function defined by  
 

. (45) 
 
After some manipulations, one can get an expres-
sion of  with several erf functions with vari-
ous arguments. Alternatively, one can use 
 

  (46) 
 
in (41). 
The variations of  and  are displayed in 
Figures 10 and 11 in order to show their different 
behaviours.  
 

 
 

Figure 10. Variations of  and  for , 
, and . 

 

 
 

Figure 11. Variations of  and  for , 
, and . 

 

In Figure 10, the average availability is smaller 
than the instantaneous one, contrary to most situ-
ations. The situation is reversed when the time-
scale is of order . The important fact remains 
that both are inferior to the steady-state value. At 
the minimum of , the two availabilities are 
identical, namely, , as expected. Ac-
tually, it is possible to determine the position and 
value of the minima. The results for various val-
ues of  are given in Table 1. 
 
Table 1. Position of the minimum for  ( ) 
 

   
 0.93145 0.955780 
 0.86128 0.995673 
 0.85475 0.999568 
 0.85410 0.999957 

 
In the limit , it is possible to show that 

. Likewise, one 
gets  for , 
where  is the location of the minimum of . 
Actually,  is the solution of  
 

 (47) 
 
where 
 

 (48) 
 
while  is the solution of  
 

. (49) 
 
When  is non-vanishingly small, the Taylor ex-
pansions are 
 

  
 

 (50) 
 

  
 

 (51) 
 

0 50 100 150 200 250 300
0.96

0.97

0.98

0.99

1.00

t

AA

A
1
2

0 5 10 15 20 25
0.95

0.96

0.97

0.98

0.99

1.00

t

A

A

A
1 2



  
Transient behaviour of instantaneous and average availabilities in non-Markovian configuration 

193 

which translates into 
 

  
 

 (52) 
 

  
 

. (53) 
 
Let us recall that , 
which shows that the minima may lie well below 
the steady-state value in the usual configuration 

. 
 
6. A criterion for   
 

In a previous work (Tanguy, 2020), we estab-
lished criteria determining the possible occur-
rence of a minimum availability satisfying  

 . The gist of the method is to write 
 

  (54) 
 
where 
 

.  (55) 
 
If at least one of the 
below the steady-state value necessarily occurs. 
From (9) and (54), one can deduce that, formally, 
 

  
 
 (56) 
 
where  is a constant of integration. 
One is led to set 
 

  (57) 
 
where  is a large value. The reason for this caveat 
is that the integral in (57) diverges when  goes to 
infinity. A simple confirmation can be obtained in 
the case of a pair of exponentials: (14) leads to a 
logarithmic divergence of . If the integral con-
verged for  going to infinity, we would have  

  
 

  
 

  
 

. (58) 
 
This means that the sign of the divergence is that 
of . The same calculation can be performed for 

, : 
 

  
 

  
 

. (59) 
 
The result is therefore independent of . The sign 
of all the  is that of . If the latter is negative, 
one should have . In the case of the 
configuration gamma( )/exp( ) studied in this 
chapter,  
 

. (60) 
 

 is therefore negative when . This is 
coherent with the absence of a minimum smaller 
than  for , as observed in Sections 5.1 
and 5.2. 
 
7. Conclusion  
 

We have studied in detail the behaviours of the in-
stantaneous and average availabilities for a 
gamma failure distribution and an exponential re-
pair distribution, which can be ascertained analyt-
ically. We have shown that the actual transient 
variations greatly depend on the shape parameter 
of the gamma distribution. We have also proposed 
a general criterion for the possible apparition of a 
minimum of the average availability that would be 
smaller than the asymptotic limit.  
An important lesson to learn is that in the transient 
regime, both definitions of the availability may at-
tain values smaller than the steady-state one, . 
This may have important consequences for the de-
sign of systems and services, because their true 
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availability may be greatly overestimated during 
their mission time.  
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