Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | z. 74 | 5--65
Tytuł artykułu

Modelowanie wielowarstwowych osłon balistycznych minimalizujących skutki udaru

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Modeling multi-layer ballistic protections minimizing the effects of a stroke
Języki publikacji
PL
Abstrakty
PL
Głównym celem przedstawionej rozprawy doktorskiej była analiza efektywności balistycznej wielowarstwowych tekstylnych osłon złożonych z tkanin dwuosiowych i trójosiowych oraz ocena skutków udaru balistycznego po niepenetrującym uderzeniu pocisku. Badania efektywności balistycznej wielowarstwowych osłon balistycznych z tkanin dwuosiowych i trójosiowych podanych ostrzałowi pociskiem Parabellum 9 x 19 mm FMJ przeprowadzono w oparciu o symulacje komputerowe w programie LS-Dyna oraz eksperymentalnie w Laboratorium Badań Balistycznych na Politechnice Łódzkiej. Tkaniny dwuosiowa i trójosiowa były wykonane z tej samej przędzy, posiadały porównywalną masę powierzchniową, natomiast różniły się jedynie typem splotu. W badaniach numerycznych modele przeplatane tkanin opracowano w oparciu o rzeczywiste wymiary tkaniny dwuosiowej i trójosiowej Kevlar 29. Model 3D tkaniny dwuosiowej i trójosiowej opracowano w programie Ansys ICEM CFD. Badania numeryczne przeprowadzono dla modeli przeplatanych warstw tkanin dwuosiowych oraz trójosiowych. Dla wyselekcjonowanych wielowarstwowych pakietów przeprowadzono symulacje centralnego uderzenia pocisku z prędkością początkową 406 m/s, co oznacza, że badania prowadzono w klasie kuloodporności II pakietów balistycznych zgodnie z normą NIJ Standard (2008). Realizacja badań numerycznych dla pakietów wielowarstwowych z tkanin dwuosiowych oraz trójosiowych Kevlar 29 pokazała skalę problemu związanego z czasochłonnością wykonywania analiz numerycz-nych. Dlatego też zdecydowano się na kolejny etap badań numerycznych polegający na zastąpieniu przeplatanego modelu geometrycznego tkaniny modelem 2D o strukturze zhomogenizowanej. Badania numeryczne oceny efektywności balistycznej zhomgenizowanych wielowarstwowych powłok 2D dla pakietów z tkanin dwu- i trójosiowych umożliwiły wyznaczenie wymaganej liczby warstw spełniającej pierwsze i drugie kryterium bezpie-czeństwa. Efektywność balistyczna miękkich pakietów formowanych z płaskich wyrobów włókienniczych ma istotny wpływ na skalę udaru balistycznego powstającego podczas niepenetrującego uderzenia pocisku (ang. BABT – Behind Armor Blunt Trauma). W celu określenia efektywności balistycznej pakietów balistycznych z tkanin dwuosiowych i trójosiowych przeprowadzono eksperymentalną analizę traumy balistycznej z użyciem podłoża z plasteliny balistycznej i żelu balistycznego. W dalszej kolejności opracowano numeryczny model korpusu ciała człowieka na podstawie sekwencji obrazów z tomografu komputerowego. Weryfikacja wyników badań numerycznych wiązała się z przygotowaniem fizycznego modelu ciała człowieka o rzeczywistych wymiarach klatki piersiowej mężczyzny. Uzyskane rezultaty pozwoliły na przeprowadzenie szczegółowej analizy fizjologicznych skutków udaru balistycznego po niepenetrującym uderzeniu pocisku. Eksperymentalna i numeryczna analiza uderzenia pocisku w model ciała człowieka wykazała, że ciśnienia oraz głębokość deformacji wywierane na określone organy są zawsze mniejsze w przypadku ochrony ciała pakietem balistycznym złożonym z tkanin trójosiowych.
EN
Soft ballistic packages are the main element of ballistic shields and are a vital protective layer protecting against fire from the firearms. Multilayer soft ballistic packages used in bulletproof vests provide protection against loss of health or even save lives of representatives of the social groups whose job is to ensure the lasting national security, maintain public order in the country and provide a sense of physical safety and security of property of the citizens. All representatives of these groups deserve the specialized and most innovative personal protection. The main aim of the foregoing doctoral thesis was to obtain an optimal textile structure of a ballistic shield minimizing the physiological effects of an impact. The thesis looks closer at the triaxial and biaxial structures adopting the two-step research methodology: numerical analysis, using Finite Element Method (FEM), and experimental verification in Ballistic Research Laboratory. First of all, numerical research – hitting 9x19 mm Parabellum FMJ bullet into the multilayered ballistic package was performed. This part resulted in the numerical analysis of the conception of replacing the fabric-structured 3D object by the homogenized 2D shell using different material models. The results of numerical research were verified experimentally in the ballistic tunnel. Packages consisted of 6, 12, 16, 18, 20, 22, 24, 30 layers of biaxial and triaxial KEVLAR 29 fabric. On the basis of the complete research results, it was found that the proposed conception of replacing the biaxial and triaxial fabric layer by the 2D shell will fully realize the established research plan. Particularly it was proved, that through the use of different material models for the researched textile structures it is possible to obtain similar ballistic effectiveness as in the case of real textile ballistic packages. In its further part the following paper describes the methodology of the research of soft ballistic packages using standard Roma No.1 substrate in accordance with the NIJ Standard 0101.06 and the proposed substrate Clear Ballistics Gel with characteristics similar to the tissues of the human body. There were significant differences in the maximum deformation cone for the package of 30 layers of woven biaxial and triaxial KEVLAR 29, depending on the ballistic substrate applied. The vast difference in the volume of deformation of the package depending on the ballistic substrate illustrates the problem of the currently used not updated research methodology of personal protection. The use of ballistic gel as a professional ballistic substrate is reliably closer to the real conditions in which vests are used. Based on the results, it was found that if diversified ballistic substrate was applied there is a tendency for the triaxial fabric ballistic package to achieve less than the maximum deformation cone. The value is low compared to the biaxial fabric package as a result of the influence of the isotropic properties of the fabric. Medical consultations of the analyzed research problem allowed to state that the assessment of the potential effects of a ballistic trauma depends primarily on defining the anatomic location of the bullet hits. Depending on where the deformation takes place in may result in breaking of ribs, lung contusion, pleural parenchyma and in extreme cases can lead to pneumothorax or bleeding into the pleural cavity. For the package with lower deformation values the scale of internal injuries is reduced and may lead to health changes only. The last stage of the research was to determine the scale of physiological effects of a stroke during non-penetrative bullet hitting in ballistic shield. For this purpose, numerical research was conducted using the discrete model in the form of "human body – a package of ballistic – projectile" It was also a challenge to make a physical model of the human body having the most important internal organs: heart and lungs. As a result of numerical analysis and experiments, it was found that the structure of the triaxial textile enables to minimize the maximum deformation cone, and consequently reduces the physiological effects of the stroke. The ballistic package of the biaxial fabric, which is an anisotropic material, significant damage in the place of direct impact in the shock wave was observed. On the other hand, the ballistic package made of triaxial fabric shows the influence of isotropic properties meaning that the deformation may be spread over a larger area ensuring less serious deformation of the internal organs. On the basis of medical opinion it was concluded that the triaxial fabric ballistic package can minimize the occurrence of rupture of liver capsule and the emergence subcapsular hematoma and there is little likelihood of intestine or colon perforation. In the case of the analysis of the damage to the thoracic cavity it has been found that the multiaxial fabric package will help to minimize the occurrence of pneumothorax and the occurrence of the extensive hemorrhage of the lung along the ribs.
Wydawca

Rocznik
Tom
Strony
5--65
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
  • Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Politechniki Łódzkiej
Bibliografia
  • [1] Barauskas R., Abraitiene A., Vilkauskas A.: 2005, Simulation of a Ballistic Impact of a Deformable Bullet Upon a Multilayer Fabric Package, WIT Transactions on Modelling and Simulation, Vol. 40, ISSN 1743-355X.
  • [2] Carroll A.W., Maj M.C., Soderstrom C.A.: 1978, A New Non-penetrating Ballistic Injury, Annals of Surgery, Vol. 188(6), pp. 735-757.
  • [3] Ching T.W., Tan V.B.C.: 2006, Modelling Ballistic Impact on Woven Fabric with LS-Dyna, Computational Methods, Springer, Printed in the Netherlands, pp. 1879-1884.
  • [4] Chu Ch.K., Chen Y.L.: 2010, Ballistic-proof Effects of Various Woven Constructions, FIBRES & TEXTILES in Eastern Europe, Vol. 18, No. 6 (83), pp. 63-67.
  • [5] Coupland R.M.: 1999, Clinical and Legal Significance of Fragmentation of Bullets in Relation to Size of Wounds: Retrospective Analysis, British Medical Journal, Vol. 319, pp. 403-406.
  • [6] Datoc D.: 2010, Finite Element Analysis and Modeling of a .38 Lead Round Nose Ballistic Gelatin Test, California Polytechnic State University, San Luis Obispo, DOI: https://doi.org/10.15368/theses.2010.44.
  • [7] Dembek Z.F. i 24 redaktorów pomocniczych: 2011, Medical Magement of Biological Causalties Handbook, US Army Medical Research Institute of Infectious Diseases, ISBN 978-0-16-090015-0.
  • [8] DiMaio V.J., DiMaio D.: 2003, Medycyna Sądowa, Wydawnictwo Edra Urban & Partner Wrocław, ISBN 978-83-87944-59-9.
  • [9] Duan Y., Keefe M., Wetzel E.D., Bogetti T.A., Powers B., Kirkwood J.E., Kirk-wood K.M.: 2005a, Effects of Friction on the Ballistic Performance of a High-strength Fabric Structure, WIT Transactions on Engineering Sciences, Vol. 49, ISSN 1743-3533.
  • [10] Duan Y., Keefe M., Wetzel E.D., Bogetti T.A., Powers B., Kirkwood J.E., Kirkwood K.M.: 2005b, Effects of Friction on the Ballistic Performance of a High-strength Fabric Structure, International Conference on Impact Loading of Lightweight Structures Florianopolis, 8-12 May.
  • [11] Duan Y., Keefe M., Bogettic T.A., Cheesemanc B.A.: 2005c, Modeling Friction Effects on the Ballistic Impact Behavior of a Single-ply High-strength Fabric, International Journal of Impact Engineering, Vol. 31, pp. 996-1012.
  • [12] Duan Y., Keefe M., Bogettic T.A., Powers B.: 2006, Finite Element Modeling of Transverse Impact on a Ballistic Fabric, International Journal of Mechanical Sciences, Vol. 48, pp. 33-43.
  • [13] Dzieman A.J.: 1960, A Provisional Casualty Criteria for Fragments and Projec-tiles, CWLR 239i, U.S. Army Chemical Warfare Laboratory.
  • [14] Fackler M.L., Bellamy R.F., Malinowski J.A.: 1986, Wound Mechanisms of Projectiles Striking at More than 1.5 km/s, Journal of Trauma-Injury Infection & Critical Care, 26:250-4.
  • [15] Gomuc R.: 2004, Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment System, PART 4: Model Simulation for Ballistic Tests, Engine Fan Blade-Out, and Generic Engine, DOT/FAA/AR-04/40,P4, U.S. Department of Transportation Federal Aviation Administration.
  • [16] Harle J.W.S., Leech C.M., Adeyefa A., Cork C.R.: 1981, Ballistic Impact Resistance of Multi-Layer Textile Fabrics, University of Manchester Institute of Science and Technology, Contract No. DAJA37-79-C-0532.
  • [17] Koperski W., Szmit Ł., Gawron A.: 2011, Badania Odziaływania Pocisków o Różnej Konstrukcji na Ośrodki o Niskiej Gęstości Osłonięte Osłonami Balistycznymi, Problemy Techniki Uzbrojenia, R. 40, z. 117.
  • [18] Lima M., Fangueiro R., Costa A., Rosiepen Ch., Rocha V.: 2009, Multiweave – A Prototype Weaving Machine for Multiaxial Technical Fabrics, Indian Journal of Fibre & Textile Research, Vol. 34, pp. 59-63.
  • [19] Lim C.T., Shim V.P.W., Ng Y.H.: 2003, Finite Element Modeling of the Ballistic Impact of Fabric Armor, International Journal of Impact Engineering, Vol. 28, pp. 13-31.
  • [20] LS-Dyna, KEYWORD USER'S MANUAL VOLUME I, 2007, Version 971, Livermore Software Technology Corporation.
  • [21] LS-Dyna, KEYWORD USER'S MANUAL VOLUME II, Material Models, 2012, Version 971, Livermore Software Technology Corporation.
  • [22] Maréchal Ch., Bresson F., Haugou G.: 2011, Development of a Numerical Model of the 9mm Parabellum FMJ Bullet Including Jacket Failure, Engineering Transactions, Vol. 59(4), pp. 263-272.
  • [23] Montanarelli N., Hawkins C., Shubin L.D.: 1976, Lightweight Body Armor for Law Enforcement Officers, National Institute of Law Enforcement and Criminal Justice Law Enforcement Assistance Administration U.S. Department of Justice, NCJ 030462.
  • [24] Navarro C., Rodriguez J., Cortes R.: 1994, Analytical Modelling of Composite Panels Subjected to Impact Loading, J. Phys. IV France, Vol. 04, pp. 515-520, DOI: 10.1051/jp4:1994880.
  • [25] NIJ Standard 0101.04, 2001, Ballistic Resistance of Personal Body Armor, U.S. Department of Justice, Office of Justice Programs, National Institute of Justice.
  • [26] NIJ Standard 0101.06, 2008, Ballistic Resistance of Body Armor, U.S. Department of Justice Office of Justice Programs, National Institute of Justice.
  • [27] Nilakantan G., Keefe M., Gillespie Jr. J.W.: 2008, Novel Mlti-scale Modeling of Woven Fabric Composites for use in Impact Studies, 10th International LS-DYNA Users Conference, pp. 20-32.
  • [28] Nilakantan G., Keefe M., Bogetti T.A., Adkinson R., Gillespie Jr. J.W.: 2010a, On the finite element analysis of woven fabric impact using multiscale modeling tech-niques, International Journal of Solids and Structures, Vol. 47(17), pp. 2300-2315.
  • [29] Nilakantan G., Keefe M., Bogetti T.A., Gillespie Jr. J.W.: 2010b, Multiscale Modeling of the Impact of Textile Fabrics Based on Hybrid Element Analysis, In-ternational Journal of Solids and Structures, Vol. 37(10), pp. 1056-1071.
  • [30] Pereira J.M., Revilock D.M.: 2004, Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Department of Transportation Federal Aviation Administration, PB2005-102471.
  • [31] Prather R., Swann C., Hawkins C.: 1977, Backface Signatures of Soft Body Armors and the Associated Trauma Effects, ADA049463.
  • [32] Raftenberg M.N.: 2003, Response of the Wayne State Thorax Model with Fabric Vest to 9mm Bullet, ARL-TR-2897, Army Research Laboratory, ADA409941.
  • [33] Raftenberg M.N.: 2004, Modeling Thoracic Blunt Trauma: Towards a Finite-Element (FE)-Based Design Methodology for Body Armor, Army Research Laboratory, ADA433234.
  • [34] Rajan S.D., Mobasher B., Vaidya A.: 2010, LS-Dyna Implemented Multi-Layer Fabric Material Model Development for Engine Fragment Mitigation, 11th International LS-Dyna Users Conference, pp. 47-58.
  • [35] Rao M.P., Duan Y., Keefe M., Powers B.M., Bogetti T.A.: 2009, Modeling the Effects of Yarn Material Properties and Friction on the Ballistic Impact of a Plain Weave Fabric, Composite Structures, Vol. 89(4), pp. 556-566, https://doi.org/10.1016/j.compstruct.2008.11.012.
  • [36] Roberts J.C., Biermann P.J., O’Connor J.V., Ward E.E., Cain R.P., Carkhuff B.G., Merkle A.C.: 2005, Modeling Nonpenetrating Ballistic Impact on a Human Torso, JOHNS HOPKINS APL TECHNICAL DIGEST, Vol. 26, No. 1.
  • [37] Roberts J.C., Merkle A.C., Biermann P.J., Ward E.E., Carkhuff B.G., Cain R.P., O’Connor J.V.: 2007, Computational and Experimental Models of the Human Torso for Non-penetrating Ballistic Impact, Journal of Biomechanics, Vol. 40, pp. 125-136.
  • [38] Roylance D.K., Wang S.S.: 1979, Penetration Mechanics of Textile Structures, Technical Report Contract No. Daag 17-76-C-0013, Massachusetts Institute of Technology Cambridge, ADA089445.
  • [39] Roylance D.K., Wang S.S.: 1980, Stress Wave Propagation in Fibers: Effect of Crossovers, Fiber Science and Technology, Vol. 13(5), pp. 385-395.
  • [40] Shen W., Niu Y., Bykanova L., Laurence P., Link N.: 2010, Characterizing the Interaction Among Bullet, Body Armor, and Human and Surrogate Targets, Journal of Biomechanical Engineering, Vol. 132(12), DOI:10.1115/1.4002699.
  • [41] Simons J.W., Erlich D.C., Shockey D.A.: 2001, Finite Element Design Model for Ballistic Response of Woven Fabrics, Proceedings of the 19th international sympo-sium on ballistics, pp. 1415-22.
  • [42] Stewart F.H.: 1921, Woven Fabric, United States Patent Office, No. 1368215.
  • [43] Tan V.B.C., Zeng X.S., Shim V.P.W.: 2008, Characterization and Constitutive Modeling of Aramid Fibers at High Strain Rates, International Journal of Impact Engineering, Vol. 35(11), pp. 1303-1313, https://doi.org/10.1016/j.ijimpeng.2007.07.010
  • [44] Utracki L.A.: 2010, Rigid ballistic composites (Review of literature), NRC Publica-tions Archive Archives des publications du CNRC, http://doi.org/10.4224/16885314
  • [45] Vinson J.R., Zukas J.A.: 1975, On the Ballistic Impact of Textile Body Armor, Journal of Applied Mechanics, Vol. 42(2), pp. 263-268, DOI:10.1115/1.3423564.
  • [46] Wang K.H-C.: 1995, Development of a Side Impact Finite Element Human Thoracic Model, Ph.D. Thesis, Wayne State University, Detroit.
  • [47] Wilde A., Roylance D., Rogers J.: 1973, Photographic Investigation of High-Speed Missile Impact upon Nylon Fabric Part I: Energy Absorption and Cone Radial Velocity in Fabric, Textile Research Journal, Vol. 43(12), pp. 753-761.
  • [48] Zhu D., Vaidya A., Mobasher B., Rajan S.D.: 2014, Finite Element Modeling of Ballistic Impact on Multi-layer Kevlar 49 Fabrics, Composites Part B: Engineering, Vol. 56, pp. 254-262, https://doi.org/10.1016/j.compositesb.2013.08.051.
  • [49] Zieliński K.W., Brocki M., Janiak M.K., Wiśniewski A.: 2010, Patologia Obrażeń i Schorzeń Wywołanych Współczesną Bronią w Działaniach Wojennych i Terrorystycznych, Ministerstwo Obrony Narodowej, Warszawa, ISBN: 978-83-927103-4-9.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0cb3e0a4-1058-4059-84ed-7762fdabb83a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.