Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 9 (44) | 502--518
Tytuł artykułu

Decoupled Control of an Active Power Filter in a Vibrating Reference Frame

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Active power filter (APF) control is a natural area of application for vibrating reference frame (VRF) transformation due to the intentional occurrence of higher harmonics in the active filter current compensating load current harmonics. Due to the vibrating frame transformation, the APF current can be represented by the DC values, and thus proportional-integral (PI) controllers are sufficient to control the converter current. However, in the typical approach, it may be impossible to combine harmonic filtration with reactive power compensation features, due to the transformation constraints. The solution to this issue is decoupling of the fundamental harmonic and high harmonic components and a separate control for each of them. This paper presents a decoupled control system of an APF, which uses VRF transformation for accurate control of high-current harmonics. Decoupling is a groundbreaking improvement of the VRF method. Moreover, different current limitation scenarios are proposed, considering both harmonics compensation and fundamental frequency reactive current compensation. Theoretical considerations are supported by simulation and experimental tests.
Wydawca

Rocznik
Strony
502--518
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Institute of Control and Industrial Electronics, 00-662 Warszawa, Poland
Bibliografia
  • Akagi, H. (2005). Active Harmonic Filters. Proceedings of the IEEE, 93(12), pp. 2128–2141. doi: 10.1109/JPROC.2005.859603
  • Akagi, H., Nabae, A. and Atoh, S. (1986). Control Strategy of Active Power Filters Using Multiple Voltage-Source PWM Converters. IEEE Transactions on Industry Applications, IA-22(3), pp. 460–465. doi: 10.1109/TIA.1986.4504743
  • Amerise, A., Mengoni, M., Rizzoli, G., Zarri, L., Tani, A. and Casadei, D. (2020). Comparison of Three Voltage Saturation Algorithms in Shunt Active Power Filters with Selective Harmonic Control. IEEE Transactions on Industry Applications, 56(3), pp. 2762–2772. doi: 10.1109/TIA.2020.2972853
  • Asiminoael, L., Blaabjerg, F. and Hansen, S. (2007). Detection is key – Harmonic detection methods for active power filter applications. IEEE Industry Applications Magazine, 13(4), pp. 22–33. doi: 10.1109/MIA.2007.4283506
  • França, B. W., Aredes, M., d. Silva, L. F., Gontijo, G. F., Tricarico, T. C. and Posada, J. (2022). An Enhanced Shunt Active Filter Based on Synchronverter Concept. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(1), pp. 494–505. doi: 10.1109/JESTPE.2021.3103836
  • Hu, H., Shi, W., Lu, Y. and Xing, Y. (2012). Design Considerations for DSP-Controlled 400 Hz Shunt Active Power Filter in an Aircraft Power System. IEEE Transactions on Industrial Electronics, 59(9), pp. 3624–3634. doi: 10.1109/TIE.2011.2165452
  • Iwański, G., Maciejewski, P. and Łuszczyk, T. (2019). Non-Cartesian Frame Transformation-Based Control of a Three-Phase Power Converter During Unbalanced Voltage Dip – Part I: Transformation Principles. Power Electronics and Drives, 4(1), pp. 47–61. doi: 10.2478/pead-2019-0013
  • Jiang, W., Ding, X., Ni, Y., Wang, J., Wang, L., and Ma W. (2018). An Improved Deadbeat Control for a Three-Phase Three-Line Active Power Filter with Current-Tracking Error Compensation. IEEE Transactions on Power Electronics, 33(3), pp. 2061–2072. doi: 10.1109/TPEL.2017.2693325
  • Karbasforooshan, M. S. and Monfared, M. (2020). An Improved Reference Current Generation and Digital Deadbeat Controller for Single-Phase Shunt Active Power Filters. IEEE Transactions on Power Delivery, 35(6), pp. 2663–2671. doi: 10.1109/TPWRD.2020.2974155
  • Lascu, C., Asiminoaei, L., Boldea, I. and Blaabjerg, F. (2009). Frequency Response Analysis of Current Controllers for Selective Harmonic Compensation in Active Power Filters. IEEE Transactions on Industrial Electronics, 56(2), pp. 337–347. doi: 10.1109/TIE.2008.2006953
  • Li, C. (2018). Unstable Operation of Photovoltaic Inverter from Field Experiences. IEEE Transactions on Power Delivery, 33(2), pp. 1013–1015. doi: 10.1109/TPWRD.2017.2656020
  • Li, Z., Ren, M., Chen, Z., Liu G. and Feng, D. (2022). A Bi-Sliding Mode PI Control of DC-Link Voltage of Three-Phase Three-Wire Shunt Active Power Filter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(6), pp. 7581–7588. doi: 10.1109/JESTPE.2022.3168313
  • Ouchen, S., Benbouzid, M., Blaabjerg, F., Betka A. and Steinhart, H. (2021). Direct Power Control of Shunt Active Power Filter Using Space Vector Modulation Based on Supertwisting Sliding Mode Control. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(3), pp. 3243–3253. doi: 10.1109/JESTPE.2020.3007900
  • Pichan, M., Seyyedhosseini, M. and Hafezi, H. (2022). A New DeadBeat-Based Direct Power Control of Shunt Active Power Filter with Digital Implementation Delay Compensation. IEEE Access, 10(July), pp. 72866–72878. doi: 10.1109/ACCESS.2022.3188685
  • Płatek, T. and Osypiński, T. (2016). Current Control with Asymmetrical Regular Sampled Pulse Width Modulator Applied in Parallel Active Filter. Bulletin of the Polish Academy of Sciences: Technical Sciences, 64(2), pp. 287–300. doi: 10.1515/BPASTS-2016-0033
  • Reyes, M., Rodriguez, P., Vazquez, S., Luna, A., Teodorescu, R. and Carrasco, J. M. (2012). Enhanced Decoupled Double Synchronous Reference Frame Current Controller for Unbalanced Grid-Voltage Conditions. IEEE Transactions on Power Electronics, 27(9), pp. 3934–3943. doi: 10.1109/TPEL.2012.2190147
  • Śleszyński, W., Cichowski, A. and Mysiak, P. (2018). Current Harmonic Controller in Multiple Reference Frames for Series Active Power Filter Integrated 518 with 18-Pulse Diode Rectifier. Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(5), pp. 699–704. doi: 10.24425/125336
  • Ufnalski, B., Michalczuk, M. and Galecki, A. (2022). Robust Tuning of Multiresonant Current Controllers for Grid-Tied Converters and Erroneous Use of the Naslin Polynomial Method. IEEE Access, 10(July), pp. 88211–88225. doi: 10.1109/ACCESS.2022.3199702
  • Wodyk, S. and Iwanski, G. (2022). Vibrating Coordinates Frame Transformation Based Unity Power Factor Control of a Three-Phase Converter at Grid Voltage Imbalance and Harmonics. IEEE Transactions on Industrial Electronics, 69(2), pp. 1114–1123. doi: 10.1109/TIE.2021.3059551
  • Wodyk, S. and Iwanski, G. (2023). Active Power Filter Control with Vibrating Coordinates Transformation. IEEE Transactions on Power Delivery, 38(1), pp. 376–386. doi: 10.1109/TPWRD.2022.3189782
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0c841a43-b01f-48a9-b78d-81a63acd5f00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.