Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 55, nr 1 | 760--771
Tytuł artykułu

Multiplication operators on the Banach algebra of bounded Φ-variation functions on compact subsets of ℂ

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let AΦ(K) be the Banach algebra of bounded Φ -variation functions defined on a compact set K in the complex plane, h a function defined on K, and Mh a multiplication operator induced by h. In this article, we determine the conditions that h must satisfy for Mh to be an operator that has closed range, finite rank or is compact. We also characterize the conditions that h must satisfy for Mh to be a Fredholm operator.
Wydawca

Rocznik
Strony
760--771
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
  • Department of Mathematics, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemática, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador , mrbracam@espol.edu.ec
  • Department of Mathematics, Universidad Centroccidental Lisandro Alvarado, UCLA, Decanato de Ciencias y Tecnología, Barquisimeto, Venezuela, jereu@ucla.edu.ve
autor
  • Department of Mathematics, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemática, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador , lmarchan@espol.edu.ec
Bibliografia
  • [1] M. Bracamonte, J. Ereú, and L. Marchan Luz, The Banach algebra of bounded Φ -variation functions on compact subsets of ℂ, Appl. Math. Inf. Sci. 15 (2021), no. 2, 115–122.
  • [2] B. Ashton and I. Doust, Functions of bounded variationon compact subsets of the plane, Studia Math. 169 (2005), 163–188.
  • [3] I. Doust and S. Al-shakarchi, Isomorphisms of AC(σ) spaces for countable sets, In: Böttcher, A., Potts, D., Stollmann, P., Wenzel, D. (eds), The Diversity and Beauty of Applied Operator Theory. Operator Theory: Advances and Applications, Birkhäuser, Cham, 268, 2018, 193–206. https://doi.org/10.1007/978-3-319-75996-8_11.
  • [4] M. Bracamonte, J. Giménez, and N. Merentes, Vector valued functions of bounded bidimensional Φ-variation, Ann. Funct. Anal. 4, (2013), no. 1, 89–108.
  • [5] R. M. Dudley and R. Norvaiša, Concrete Functional Calculus, Springer Monographs in Mathematics, New York, 2011.
  • [6] P. Aiena, Semi-Fredholm operators, perturbation theory and localized SVEP, XX Escuela Venezolana de Matemáticas, Mérida - Venezuela, 2007.
  • [7] R. Castillo, J. Ramos-Fernández, and H. Vacca-González, Properties of multiplication operators on the space of functions of bounded φ-variation, Open Math. 19 (2021), no. 1, 492–504.
  • [8] D. Bugajewski and J. J. Gulgowski, On the characterization of compactness in the space of functions of bounded variation in the sense of Jordan, Math. Anal. Appl. 444 (2016), 230–250.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0c7f3d2f-232b-431f-afa2-1898f2821d98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.