Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 41, No. 1 | 89--100
Tytuł artykułu

Experimental Study on Normal Force in MR Fluids Under Low and High Shear Rates

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work the comparative analysis of the ability to generate a normal force by selected commercially available magnetorheological fluids was shown. For this purpose four types of tests were conducted; a magnetic induction ramp with constant shear rate, a step of magnetic induction without shear and a shear rate ramp with a constant magnetic induction. The aim of the experiments were to examine the influence of the shear on the normal force generated in selected magnetorheological fluids as a result of magnetic field excitation.
Słowa kluczowe
Wydawca

Rocznik
Strony
89--100
Opis fizyczny
Bibliogr. 11 poz., rys., schem., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, horak@agh.edu.pl
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, jsalwin@agh.edu.pl
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, szczech@agh.edu.pl
Bibliografia
  • 1. Bajkowski, J. (2014). Ciecze i tłumiki magnetoreologiczne. PWN, Warszawa.
  • 2. Bajkowski, M. and Floriańczyk, A. (2013). Analysis of effect of pulse generated by the special object 12, 7mm equipped in magnetorheological damping system on the thoracic spine. Machine Dynamics Research, 37(1).
  • 3. Chan, Y. T., Liu, K., Wong, P., and Bullough, W. (2009). The response of excited magneto-rheological fluid along field direction. In Journal of Physics: Conference Series, volume 149, page 012041. IOP Publishing.
  • 4. Guo, C., Gong, X., Xuan, S., Zhang, Y., and Jiang, W. (2012). An experimental investigation on the normal force behavior of magnetorheological suspensions. Korea-Australia Rheology Journal, 24(3):171–180.
  • 5. Guo, C., Gong, X., Xuan, S., Zong, L., and Peng, C. (2011). Normal forces of magnetorheological fluids under oscillatory shear. Journal of Magnetism and Magnetic Materials, 324(6):1218–1224.
  • 6. Laun, H. M., Gabriel, C., and Schmidt, G. (2008). Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1T. Journal of Non-Newtonian Fluid Mechanics, 148(1):47–56.
  • 7. Rosensweig, R. (1985). Ferrohydrodynamics. Cambridge University Press, Cambridge.
  • 8. Salwiński, J. and Horak, W. (2011). Measurement of normal force in magnetorheological and ferrofluid lubricated bearings. In Key Engineering Materials, volume 490, pages 25–32. Trans Tech Publ.
  • 9. See, H. and Tanner, R. (2003). Shear rate dependence of the normal force of a magnetorheological suspension. Rheologica acta, 42(1-2):166–170.
  • 10. Skalski, P., Bajkowski, J., and Woźnica, K. (2010). Mr fluid analysis in a magnetorheological damper. Machine Dynamics Research, 34(4):96–102.
  • 11. Zubieta, M., Eceolaza, S., Elejabarrieta, M., and Bou-Ali, M. (2009). Magnetorheological fluids: characterization and modeling of magnetization. Smart Materials and Structures, 18(9).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0c738b3e-10a7-44b2-81cc-463eccc65690
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.