Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 4 | 477--487
Tytuł artykułu

Texture Representation and Application of Colored Spun Fabric Using Uniform Three-Structure Descriptor

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The local binary pattern (LBP) and its variants have shown their effectiveness in texture images representation. However, most of these LBP methods only focus on the histogram of LBP patterns, ignoring the spatial contextual information among them. In this paper, a uniform three-structure descriptor method was proposed by using three different encoding methods so as to obtain the local spatial contextual information for characterizing the nonuniform texture on the surface of colored spun fabrics. The testing results of 180 samples with 18 different color schemes indicate that the established texture representation model can accurately express the nonuniform texture structure of colored spun fabrics. In addition, the overall correlation index between texture features and sample parameters is 0.027 and 0.024, respectively. When compared with the LBP and its variants, the proposed method obtains a higher representational ability, and simultaneously owns a shorter time complexity. At the same time, the algorithm proposed in this paper enjoys ideal effectiveness and universality for fabric image retrieval. The mean Average Precision (mAP) of the first group of samples is 86.2%; in the second group of samples, the mAP of the sample with low twist coefficient is 89.6%, while the mAP of the sample with high twist coefficient is 88.5%.
Wydawca

Rocznik
Strony
477--487
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • School of electronic and electrical engineering, Wuhan Textile University, Wuhan 430200, China, yuanli@wtu.edu.cn
  • Wuhan Textile University, Hubei Province, new textile materials and technology State Key Laboratory of advanced processing technology, Wuhan 430200, Hubei Province
autor
  • School of electronic and electrical engineering, Wuhan Textile University, Wuhan 430200, China
autor
  • Wuhan Textile University School of mathematics and computer, Wuhan 430200, China
autor
  • School of electronic and electrical engineering, Wuhan Textile University, Wuhan 430200, China
autor
  • School of electronic and electrical engineering, Wuhan Textile University, Wuhan 430200, China
Bibliografia
  • [1] Li, L., Ling-Jun, Z., Cheng-Yu, G., Liang, W., Jun, T. (2018). Texture classification: State-of-the-art methods and prospects. Acta Automatica Sinica, 44(4), 584-607.
  • [2] Xiao, B., Wang, K., Bi, X., Li, W., Han, J. (2019). 2D-LBP: An enhanced local binary feature for texture image classification. IEEE Transactions on Circuits and Systems for Video Technology, 29(9), 2796-2808.
  • [3] Pan, Z., Wu, X., Li, Z. (2019). Central pixel selection strategy based on local gray-value distribution by using gradient information to enhance LBP for texture classification. Expert Systems with Applications, 120, 319-334.
  • [4] Zhao, Y., Wang, R. G., Wang, W. M., Gao, W. (2016). Local Quantization Code histogram for texture classification. Neurocomputing, 207, 354-364.
  • [5] Zhou, J., Wang, J. G., Gao, W. D. (2018). Unsupervised fabric defect segmentation using local texture feature. Journal of Textile Research, 39, 57-64.
  • [6] Merabet, E. M., Ruichek, Y. (2018). Local concave-and-convex micro-structure patterns for texture classification. Pattern Recognition, 76(C), 303-322.
  • [7] Banerjee, P., Bhunia, A. K., Bhattacharyya, A., Roy, P. P., Murala, S. (2018). Local meighborhood intensity pattern–A new texture feature descriptor for image retrieval. Expert Systems with Applications, 113, 100-115.
  • [8] Veerashetty, S., Patil, N. B. (2020). Novel LBP based texture descriptor for rotation, illumination and scale invariance for image texture analysis and classification using multi-kernel SVM. Multimedia Tools and Applications, 79(15), 9935-9955.
  • [9] Zhang, Z., Liu, S., Mei, X., Xiao, B., Zheng, L. Learning completed discriminative local features for texture classification. Pattern Recognition, 67, 263-275.
  • [10] Lan, R., Zhou, Y., Tang, Y. Y. (2016). Quaternionic local ranking binary pattern: A local descriptor of color images. IEEE Transactions on Image Processing, 25(2), 566-579.
  • [11] Wang, G. D., Zhang, P. L., Ren, G. Q., Kou, X. (2012). Texture feature extraction method fused with LBP and GLCM. Computer Engineering, 38(5), 199-201.
  • [12] Wang, K. L., Zhang, Y. H., Xiao, B., Li, W. S. Texture images classification based on two dimensional local binary patterns. Acta Electronica Sinica, 46(10), 2519-2526.
  • [13] Shah, D., Zaveri, T. (2021). Hyperspectral endmember extraction using Pearson’s correlation coefficient. International Journal of Computational Science and Engineering, 24(1), 89-97.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0bf9d26d-cf6a-400a-8248-53e659091f49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.