Czasopismo
2015
|
Vol. 44, No. 2
|
139--150
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The study focused on the relationships between charophytes and the surrounding species composition and environmental factors in a lowland stream (Flinta stream, Western Poland). A total of 32 vegetation plots (4 m × 4 m) and 13 environmental variables were tested. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to describe the relationships between the species composition and the selected variables. Dominance curves of aquatic plants, response curves (GAMs model) of charophytes and other macrophytes to the velocity gradient (the most important environmental factor, the Monte Carlo test) were prepared. In this study, 2 species of charophytes were recorded: Chara vulgaris and Chara globularis and 5 other co-occurring macroscopic algae, 2 mosses and 10 vascular plants. In the studied stream, charophytes occupied the separate niche. Chara vulgaris stands with moss vegetation were found in stream sections with the highest velocity of the water current (0.29 m s-1 mean), and the Chara globularis (with dominant Potamogeton species), preferred sections with the smallest water current velocity (0.19 m s-1 mean). Charophytes seem to respond to ecological gradients differently from mosses and vascular plants. These differences are related to current velocity, pH, conductivity and organic matter in bottom sediments, and to the niche differentiation associated with them.
Czasopismo
Rocznik
Tom
Strony
139--150
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland, emijak@amu.edu.pl
autor
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
Bibliografia
- [1]. Allan, J.D. (1995). Stream ecology: structure and function of running waters. London: Chapman and Hall.
- [2]. APHA, (1998). Standard methods for the examination of water and wastewater 20th ed. Washington DC: American Public Health Association.
- [3]. Barinova, S.S. & Nevo, E. (2010). The Upper Jordan River algal communities are evidence of long-term climatic and anthropogenic impacts. Journal Water Resource and Protection 2: 507-526. D01:10.4236/jwarp.2010.26058.
- [4]. Bator, J., Gąbka, M., Jakubas, E. (Eds.) (2014). Koncepcja lasu modelowego w zarządzaniu i ochronie różnorodności biologicznej rzek Wełny i Flinty (Wielkopolska). (The concept of the model forest in management and biodiversity protection of the Wełna and the Flinta rivers (Wielkopolska Region))(in Polish). Poznań: Bogucki Wydawnictwo Naukowe.
- [5]. Blażenćić, J. (2014). Overview of the stoneworts (Charales) of Serbia with the estimation of the threat status. Botanica Serbica 38(1): 121-130.
- [6]. Blażenćić, J., Stevanovic, B., Blażenćić, Z. & Stevanovic, V. (2006). Red data list of charophytes in the Balkans. Biodiversity and Conservation 15: 3445-3457. DOI: 10.1007/s10531-005- 2008-5.
- [7]. Blindow, I. & Schutte, M. (2007). Elongation and mat formation of Chara aspera under different light and salinity conditions. Hydrobiologia 584(1): 69-76. DOI: 10.1007/s10750-007- 0578-9.
- [8]. Blindow, I., Hargeby, A. & Andersson, G., (2002). Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquatic Botany 72: 315-334. DOI: 10.1016/S0304-3770(01)00208-X.
- [9]. Bociąg, K., Gałka, A., Łazarewicz, T. & Szmeja, J. (2009). Mechanical strength of stems in aquatic macrophytes. Acta Societatis Botanicorum Poloniae 78(3): 181-187.
- [10]. Bociąg, K., Robionek, A., Rekowska, E. & Banaś, K. (2013). Effect of hydrodynamic disturbances on the biomass and architecture of the freshwater macroalga Chara globularis Thuill. Acta Botanica Gallica 160(2): 149-156.
- [11]. Bornette, G. & Arens, M-F. (2002). Charophyte communities in cut-off river channels. The role of connectivity. Aquatic Botany 73: 149-162. DOI: 10.1016/S0304-3770(02)00017-7.
- [12]. Bornette, G., Amoros, C. & Chessel, D. (1994). Effect of allogenic processes on successional rates in former river channels. Journal of Vegetation Science 5: 237-246. DOI: 10.2307/3236156.
- [13]. Caisova, L. & Gąbka, M. (2009). Charophytes (Characeae, Charophyta) in the Czech Republic: taxonomy, autecology and distribution. Fottea 9: 1-43.
- [14]. Cartajena, M.G. & Carmona, J. (2009). Morphological and ecological characterization of Charales (Chlorophyta) from calcareous tropical streams in Mexico. Cryptogamie, Algologie 30(3): 193-208.
- [15]. Chambers, P.A., Prepas, E.E., Hamilton, H.R. & Bothwell, M.L. (1991). Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications 1(3): 249-257. DOI: 10.2307/1941754.
- [16]. Chudyba, H. (1970). Hildenbrandia rivularis (Liebm.) I. Ag. i glony towarzyszące w rzece Krutyni. Zeszyty Naukowe Wyższej Szkoły Rolniczej w Olsztynie 26: 637-671 (in Polish).
- [17]. Dąmbska, I. (1964). Charophyta - Ramienice. Flora Słodkowodna Polski. Tom 13. Warszawa: PAN, Instytut Botaniki.
- [18]. Dąmbska, I. (1966). Zbiorowiska ramienic Polski. Prace Komis. Biol., Pozn. Tow. Przyj. Nauk, Wydz. Mat.-Przyr., 31(3): 1-76 (in Polish).
- [19]. Franklin, P., Dunbar, M.J. & Whitehead, P. (2008). Flow controls on lowland river macrophytes: a review. Science of the Total Environment. 400: 369-378. DOI: 10.1016/j. scitotenv.2008.06.018.
- [20]. Gąbka, M. (2009). Charophytes of the Wielkopolska Region (NW Poland): distribution, taxonomy and autecology. Poznań: Bogucki Wydawnictwo Naukowe.
- [21]. Gąbka, M., Owsianny, P.M., Sobczyński, T. & Zioła, A. (2005). The spring-lake Niewiemko - horizontal diversity of algae and macrophytes communities on the background of habitat conditions (Poland). Limnological Review 5: 75-80.
- [22]. Grinberga, L., (2010). Environmental factors influencing the species diversity of macrophytes in middle-sized streams in Latvia. Hydrobiologia 656: 233-241. DOI: 10.1007/s10750- 010-0432-3.
- [23]. Grinberga, L., (2011). Macrophyte species composition in streams of Latvia under different flow and substrate conditions. Estonian Journal of Ecology. 60: 194-208. DOI: 10.3176/eco.2011.3.03.
- [24]. Guiry, M.D. & Guiry, G.M. (2014). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Retrieved November 15, 2014, from http://www. algaebase.org.
- [25]. Hastie, T.J. & Tibshirani, R.J. (1990). Generalized additive models. London: Chapman and Hall.
- [26]. Hrivnak, R., Kochjarova, J., Otàhelóvà, H., Palóve-Balanga, P., Slezàka, M. & Slezàka P. (2014). Environmental drivers of macrophyte species richness in artificial and natural aquatic water bodies - comparative approach from two central European regions. Annales De Limnologie-International Journal of Limnology. 50: 269-278. DOI: 10.1051/ limn/2014020.
- [27]. Hrivnak, R., Otàhelóva, H., Kochjarova, J. & Palove-Balang, P. (2013). Effect of environmental conditions on species composition of macrophytes - study from two distinct biogeographical regions of Central Europe. Knowledge and Management of Aquatic Ecosystems 411: 09. DOI: 10.1051/ kmae/2013076.
- [28]. Hu, B-F., Feng, J. & Xie, S-L. (2012). Occurrence of epiphytic algae on three stream macroalgae in Xin’an Spring, North China. Acta Hydrobiologica Sinica 36(2): 291-298.
- [29]. Krause, W. (1981). Characeen als Bioindykatoren fur den Gewasserzustand. Limnologica 13(2): 399-418.
- [30]. Krause, W. (1997). Charales (Charophyceae). Susswasserflora von Mitteleuropa, Band 18. Jena, Germany: Gustav Fischer.
- [31]. Langangen, A. (2007). Charophytes of the Nordic countries. Oslo: Saeculum ANS.
- [32]. Langangen, A. (2013). Charophytes collected on Rhodes and Kos, Greece in 2011. Thaiszia, Journal of Botany. 23(1): 43¬46.
- [33]. Leps, J. & Smilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press.
- [34]. Manolaki, P. & Papastergiadou, E., (2013). The impact of environmental factors on the distribution pattern of aquatic macrophytes in a middle-sized Mediterranean stream. Aquatic Botany 104: 34-46.
- [35]. McCune, B. & Mefford, M. J. (1999). PC-ORD. Multivariate Analysis of Ecological Data, Version 4. Gleneden Beach, OR, USA: MjM Software Design.
- [36]. Millan, A., Velasco, J., Gutierrez-Canovas, C., Arribas, P., Picazo, F, Sanchez-Fernandez, D. & Abellan, P. (2011). Mediterranean saline streams in southeast Spain: What do we know? Journal of Arid Environments 75: 1352-1359. DOI: 10.1016/j.jaridenv.2010.12.010.
- [37]. Mirek, Z., Piękoś-Mirkowa, H., Zając, A. & Zajac, M., (2002). Flowering plants and pteridophytes of Poland. A checklist. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences.
- [38]. Moreno Alcaraz, J.L., Canales Monteagudo, L. & Aboal Sanjurjo, M. (2013). Morphological description and ecology of some rare macroalgae in southcentral Spanish rivers (Castilla-La Mancha Region). Anales del Jardin Botanico de Madrid 70(1): 81-90. DOI: 10.3989/ajbm. 2323.
- [39]. Ochyra, R., Żarnowiec, J. & Bednarek-Ochyra, H. (2003). Census catalogue of Polish mosses. Kraków: W. Szafer Institute of Botany. Polish Academy of Sciences.
- [40]. Otàhelóva H., Valachovic M. & Hrivnak R. (2007). The impact of environmental factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica 37: 290-302. DOI:10.1016/j.limno.2007.07.003.
- [41]. Puijalon, S. & Bornette, G., (2006). Phenotypic plasticity and mechanical stress: biomass partitioning and clonal growth of an aquatic plant species. American Journal of Botany. 93: 1090-1099. DOI: 10.3732/ajb.93.8.1090.
- [42]. Romanov, R.E. & Barinova, S.S. (2012). The charophytes of Israel: historical and contemporary species richness, distribution, and ecology. Biodiversity: Research and Conservation. 25: 67¬74. DOI: 10.2478/v10119-012-0015-4.
- [43]. Sand-Jensen, K., Riis, T., Vestergaard, O. & Larsen, S. E. (2010). Macrophyte decline in Danish lakes and streams over the past 100 years. Journal of Ecology 88: 1030-1040. DOI: 10.1046/j.1365-2745.2000.00519.x.
- [44]. Shi, Y., Xie, S-L., Li, Z., Hu, B-F., Li, Y-H. & Zhang, M. (2012). Effect of environmental factors on distribution of stream macroalgae in Niangziguan Spring in Shanxi Province, North China. African Journal of Biotechnology 11(18): 4168¬4179. DOI: 10.5897/AJB11.3350.
- [45]. Siemińska, J., Bak, M., Dziedzic, J., Gąbka, M., Gregorowicz, P. & Mrozinska, T. et al. (2006). Red list of the algae in Poland. In K. Zarzycki, W Wojewoda & Z.W. Szelag (Eds.), Red list of plants and fungi in Poland. Kraków: Szafer Institue of Botany, Polish Academy of Sciences.
- [46]. Szoszkiewicz, K., Zbierska J., Jusik Sz. & Zgoła T. (2010). Makrofitowa Metoda Oceny Rzek. Podręcznik metodyczny do oceny i klasyfikacji stanu ekologicznego wód płynących w oparciu o rośliny wodne. Poznań: Bogucki Wydawnictwo Naukowe.
- [47]. ter Braak, C. J. F. & Śmilauer, P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Ithaca, USA: Microcomputer Power.
- [48]. Urbaniak, J. & Gąbka, M., (2014). Polish Charophytes: an illustrated guide to identification. Wrocław: Wydawnictwo Uniwersytetu Przyrodniczego.
- [49]. Urbaniak, J., Sugier, P. & Gąbka, M. (2011). Charophytes of the lubelszczyzna region (eastern Poland). Acta Societatis Botanicorum Poloniae 80(2): 159-168.
- [50]. Van der Maarel, E., (1979). Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97-114. DOI: 10.1007/BF00052021.
- [51]. Velasco, J., Millan, A., Vidal-Abarca, M. R., Suarez, M. L., Guerrero, C. & Ortega, M. (2003). Macrophytic, epipelic and epilithic primary production in a semiarid Mediterranean stream. Freshwater Biology 48: 1408-1420. DOI: 10.1046/j.1365-2427.2003.01099.x.
- [52]. Woś, A. (1999). Klimat Polski (Climate of Poland). Warszawa: Wydawnictwo Naukowe PWN.
- [53]. Yehuda, G., Barinova, S.S., Krugman, T., Pavlicek, T., Nov, Y. & Nevo E. (2013). Microscale adaptive response of charophytes of the Negev Desert, Israel: species divergences by AFLP. Natural Resources and Conservation 1(3): 55-64. DOI: 10.13189/nrc.2013.010301.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0bce45c7-ac38-4878-87a0-5183d01f8074