Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, iss. 7 | 22--33
Tytuł artykułu

Examining Uncertainties in Intensity-Duration-Frequency Curves for Babylon City: A Comprehensive Analysis

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rains are one of the complementary components of the hydrological cycle, so engineers must be able to determine as much as possible in order to design facilities dealing with the assembly, transportation and storage of rains.. The objective of this research is to comprehensive analysis the data of the depth of annual rainfall (mm) of the Babylon Station for the purpose of finding the characteristics of the distributions of observed frequency. In this paper data of annual rainfall depth (mm) by taking maximum value from one year’s data as well as the rate of data values for one year from 1991 to 2021 for one stock station in Iraq, Babylon for the purpose of creating the characteristics of the distribution of observed frequency. An attempt was made to fit three of the available theoretical distributions, the Normal, Log Normal and Gamma distributions. The Chi-Square, Kolmogorov-Smirnov and Anderson-Darling indices examined for the purpose of comparing theoretical distributions with viewed distributions. Gumbel’s extreme value distribution, the Normal and the Log Normal distribution were used to know the suitability of the data and for the periods of 5, 10, 15 and 50 years. In the remainder of this research, grants of intensity-durationfrequency (IDF) curves of the rainfall were obtained and repeated for the rainfall of the Babylon observation station for 15, 30 and 60 minutes.
Wydawca

Rocznik
Strony
22--33
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Professor, Doctor in civil Engineering Department, University of Babylon, Hilla, Babylon, P.O.B. 4, Iraq, w7735611@gmail.com
  • Assistant Lecture, M.Sc student, In Water Resources Engineering, University of Babylon, Hilla, Babylon, Iraq
Bibliografia
  • 1. Campos, J.N.B.; de Studart, T.M.C.; de Assis de Souza Filho, F.; Porto, V.C., 2020. On the rainfall intensity–duration–frequency curves, partial-area effect and the rational method: Theory and the engineering practice. Water, 12, 2730. DOI:10.3390/w12102730.
  • 2. Chow, V.T., Maidment, D.R., and Mays, L.W., 1988. Handbook of applied hydrology, McGraw-Hill series in water Resources and Environmental Engineering, New York.
  • 3. Erto, P., and Lepore, A., 2011. A Note on the plotting position controversy and a new distribution-free formula, Department of Aerospace Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy. DOI:10.1007/978-3-642-35588-2_3.
  • 4. Ginos B.F., 2009. Parameter estimation for the Lognormal distribution M. Sc. Thesis, Department of Statistics, Brigham Young University.
  • 5. Gu, X.; Ye, L.; Xin, Q.; Zhang, C.; Zeng, F.; Nerantzaki, S.D.; Papalexiou, S.M., 2022. Extreme precipitation in China: A review. Adv. Water Resour., 163, 104144. DOI:10.1016/j.advwatres.2022.104144.
  • 6. Krishnamoorthy K., 2006. Handbook of statistical distributions with applications, University of Louisiana at Lafayette, U.S.A.
  • 7. L. Jäntschi, S.D. Bolboacă, 2018. Computation of Probability Associated with Anderson–Darling Statistic. DOI:10.3390/math6060088.
  • 8. Miller, J.; Taylor, C.; Guichard, F.; Peyrillé, P.; Vischel, T.; Fowe, T.; Panthou, G.; Visman, E.; Bologo, M.; Traore, K.; Coulibaly, G.; Chapelon, N.; Beucher, F.; Rowell, D.P.; Parker, D.J., 2022. Highimpact weather and urban flooding in the West African Sahel–A multidisciplinary case study of the 2009 event in Ouagadougou. Weather. Clim. Extrem., 36, 100462. DOI:10.1016/j.wace.2022.100462.
  • 9. Montgomery, D.C. and Runger, G.C., 2003. Applied statistics and probability for engineers, John Wiley & Sons, Inc., 605 Third Avenue, New York.
  • 10. Omran, A.S and Al- Bazzaz S.T. 2014. Statistical Analysis of rainfall records of some Iraqi Eteorological Stations, Journal of Babylon University/ Engineering Sciences. 1(22).
  • 11. Prodanovic, P. and Simonovic, S.P., 2007. Development of rainfall intensity duration frequency curves for the City of London under the changing climate, Department of Civil and Environment Engineering. The University of Western Ontario London, Ontario, Canada.
  • 12. Reder, A.; Raffa, M.; Padulano, R.; Rianna, G.; Mercogliano, P. 2022. Characterizing extreme values of precipitation at very high resolution: An experiment over twenty European cities. Weather. Clim. Extrem., 35, 100407. DOI:10.1016/j.wace.2022.100407.
  • 13. Reich, B.M. and Osborn, H.B., 1982. Improving point rainfall prediction with experimental watershed data, A Part of the Proceedings of the International Symposium on Rainfall-Runoff Modeling held May 18–21, 1981 at Mississippi State University, Mississippi State, Mississippi, U.S.A., Tucson, Arizona.
  • 14. Betül S., 2005. Evaluation of the synthetic annual maximum storms Pamukkale University, Denizli, Turkey. The Electronic Journal of the International Association for Environmental Hydrology, volume 13.
  • 15. Silva, D.F.; Simonovic, S.P.; Schardong, A.; Goldenfum, J.A. 2021. Assessment of non-stationary IDF curves under a changing climate: Case study of different climatic zones in Canada. J. Hydrol. Reg. Stud., 36, 100870. DOI:10.1016/j.ejrh.2021.100870.
  • 16. AL-Fatlawi T.J.M. and AL-Talebi K.G.H. 2024. Uncertainty analysis of intensity- duration-frequency curves of Babylon City, Journal homepage: http://iieta.org/journals/mmep (Accepted under publication).
  • 17. U.S. Army Corps of Engineers, 1994. Engineering and design Flood-Runoff analysis, Department of the Army, Engineer Manual 1110-2-1417,Washington, DC 20314-1000.
  • 18. Vose, D., 2010. Fitting distributions to data and why you are probably doing it wrong, 15 Feb 2010.
  • 19. Fang, J; Lau, C.K.M.; Lu, Z.; Wu, W.; Zhu, L., 2019. Natural disasters, climate change, and their impact on inclusive wealth in G20 countries. Environ Sci Pollut Res 26(2), 1455–1463.
  • 20. Alam, F.; Salam, M.; Khalil, N.A.; Khan, O.; Khan, M. 2021. Rainfall trend analysis and weather forecast accuracy in selected parts of Khyber Pakhtunkhwa, Pakistan. SN Applied Sciences, 3, 1–14. DOI:10.1007/s42452-021-04457-z.
  • 21. 21. Cooley, D.; Nychka, D.; Naveau, P. 2007. Bayesian spatial modeling of extreme precipitation return levels. Journal of the American Statistical Association, 102(479), 824–840. DOI:10.1198/016214506000000780.
  • 22. Salam, M.; Alam, F.; Hossain, M.N.; Saeed, M.A.; Khan, T.; Zarin, K.; Rwan, B.; Ullah, W.; Khan, W.; Khan, O., 2021. Assessing the drinking water quality of educational institutions at selected locations of district Swat, Pakistan. Environmental Earth Sciences, 80, 1–11. DOI:10.1007/s12665-021-09595-6.
  • 23. Abdullah M.A., and Al-Mazroui M.A., 1998. Climatological study of the southwestern region of Saudi Arabia. I. Rainfall analysis, Faculty of Meteorology, King Abdul Aziz University, PO Box 9034, Jeddah 21413, Saudi Arabia, 9, 213–223.
  • 24. Kohnova, B.M.; Ladislav, S.G.; Szolgay, J. and Hlavcova, K., 2009. Estimation of IDF curves of extreme rainfall by simple scaling in Slovakia, Department of Land and Water Resources Management, Faculty of Civil Engineering, Slovak University of Technology, 39(3), 187–206.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0b7b710a-c112-4af7-a74c-72b886d1782a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.