Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | No. 58 (3) | 187--195
Tytuł artykułu

Fisher–Shannon analysis of the time variability of remotely sensed sea surface temperature at the Brazil–Malvinas Confluence

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The collision of the warm and salty southward flowing Brazil Current and the cold and relatively fresh northward flowing Malvinas Current produces a strong frontal zone known as the Brazil–Malvinas Confluence Zone (BMCZ). This is featured by intense presence of eddies and meanders and is one of the most energetic areas of the world oceans. We apply the statistical method of Fisher–Shannon (FS) to the time series of sea surface temperature, derived from the satellite Advanced Very High Resolution Radiometer (AVHRR) imagery, acquired from 1984 to 1999. The FS method consists of the joint application of Fisher information measure (FIM) and Shannon entropy (SE), measuring respectively the degree of organization and the disorder of a system. Our findings indicate that the FS method is able to locate very clearly the BMCZ, which corresponds to the less organized and more disordered area within the area of confluence between the Brazil and Malvinas Currents.
Wydawca

Czasopismo
Rocznik
Strony
187--195
Opis fizyczny
Bibliogr. 62 poz., wykr., mapy
Twórcy
  • Comisión de Investigaciones Científicas (CIC)–UCALP-CCT-BB (IADO-CONICET), CC 804, Bahía Blanca, Argentina
autor
  • ARPAB, Potenza, Italy
  • CCT-BB (IADO-CONICET), UTN Facultad Regional Bahía Blanca, Bahía Blanca, Argentina
autor
Bibliografia
  • [1] Anding, D., Kauth, R., 1970. Estimation of sea surface temperature from space. Rem. Sens. Environ. 1, 217—220.
  • [2] Angulo, J. C., Antolin, J., Sen, K. D., 2008. Fisher—Shannon plane and statistical complexity of atoms. Phys. Lett. A 372 (5), 670—674.
  • [3] Bava, J., 2004. Metodologías de procesamiento de imágenes NOAA-AVHRR y su utilización en aplicaciones oceanográficas y biológicopesqueras en el Atlántico Sudoccidental. (Ph.D. thesis). Univ. Buenos Aires, 142 pp.
  • [4] Bava, J., Gagliardini, D. A., Dogliotti, A. I., Lasta, C. A., 2002. Annual distribution and variability of remotely sensed sea surface temperature fronts in the southwestern Atlantic Ocean. In: 29th International Symposium on Remote Sensing of the Environment, Int. Soc. Rem. Sens. Environ., Buenos Aires, 8—12.
  • [5] Bernstein, R. L., Chelton, D. B., 1985. Large-scale sea surface temperature variability from satellite and shipboard measurements. J. Geophys. Res. 90 (11), 619—630.
  • [6] Bianchi, A. A., Giulivi, C. F., Piola, A. R., 1993. Mixing in the Brazil— Malvinas Confluence. Deep-Sea Res. Pt. I 40 (7), 1345—1358.
  • [7] Bianchi, A. A., Piola, A. R., Collino, G. J., 2002. Evidence of double diffusion in the Brazil—Malvinas Confluence. Deep-Sea Res. Pt. I 49 (1), 41—52.
  • [8] Blanke, B., Arhan, M., Modec, G., Rocheet, S., 1999. Warm water paths in the equatorial Atlantic as diagnosed with a general circulation model. J. Phys. Oceanogr. 29 (11), 2453—2768.
  • [9] Brandini, F. P., Boltovskoy, D., Piola, A., Kocmur, S., Rottgers, R., Cesar Abreu, P., Mendes Lopes, R., 2000. Multiannual trends in fronts and distribution of nutrients and chlorophyll in the south-western Atlantic (30—628S). Deep-Sea Res. Pt. I 47 (6), 1015— 1033.
  • [10] Brown, M. G., Smith, K. B., 1990. Are SOFAR float trajectories chaotic? J. Phys. Oceanogr. 20 (1), 139—149.
  • [11] Brown, M. G., Smith, K. B., 1991. Ocean stirring and chaotic low-order dynamics. Phys. Fluids 3, 1186—1192.
  • [12] Chelton, D. B., Schlax, M. G., Witter, D. L., Richman, J. G., 1990. GEOSAT altimeter observations of the surface circulation of the Southern Ocean. J. Geophys. Res. 95 (C10), 17877—17903.
  • [13] Denman, K. L., Abbott, M. A., 1994. Time scales of pattern evolution from cross-spectrum analysis of advanced very high resolution radiometer and coastal zone color scanner imagery. J. Geophys. Res. 99 (C4), 7433—7442.
  • [14] Devroye, L. A., 1987. Course on Density Estimation. Birkhauser, Boston, 183 pp.
  • [15] Doney, S., Glover, D. M., McCue, S. J., Fuentes, M., 2003. Mesoscale variability of SeaWiFS satellite ocean color: global patterns and spatial scales. J. Geophys. Res. 108 (C2), 1—15.
  • [16] Evans, D. L., Signorini, S. S., Miranda, L. B., 1983. A note on the transport of the Brazil Current. J. Phys. Oceanogr. 23 (13), 1732—1738.
  • [17] Fisher, R. A., 1925. Theory of statistical estimation. Proc. Camb. Philos. Soc. 22, 700—725.
  • [18] Frieden, B. R., 1990. Fisher information, disorder, and the equilibrium distributions of physics. Phys. Rev. A 41 (8), 4265—4276.
  • [19] Fu, L. L., 1996. The circulation and its variability of the South Atlantic Ocean: first results from the TOPEX/POSEIDON mission. In: Wefer, G., Berger, W. H., Siedler, G., Webb, D. J. (Eds.), The South Atlantic: Present and Past Circulation, Springer-Verlag, Berlin, 63—82, 644 pp.
  • [20] Gordon, A. L., 1989. Brazil—Malvinas Confluence — 1984. Deep-Sea Res. Pt. I 36 (3), 359—384.
  • [21] Isern-Fontanet, J., Turiel, A., Garcia-Ladona, E., Font, J., 2007. Microcanonical multifractal formalism: application to the estimation of ocean surface velocities. J. Geophys. Res. 112 (C5), C05024, 18 pp.
  • [22] Janicki, A., Weron, A., 1994. Simulation and Chaotic Behavior of Alpha-Stable Stochastic Processes. Marcel Dekker, New York, 57 pp.
  • [23] Kilpatrick, K. A., Podestà, G. P., Evans, R., 2001. Overview of the NOAA/NASA Advanced Very High Resolution Radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. 106 (C5), 9179—9197.
  • [24] Kushnir, Y., Robinson, W. A., Bladé, I., Hall, N. M. J., Peng, S., Sutton, R., 2002. Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J. Climate 15 (16), 2233—2256.
  • [25] Legeckis, R., 1978. A survey of worldwide sea surface temperature fronts detected by environmental satellites. J. Geophys. Res. 83 (C9), 4501—4522.
  • [26] Lentini, C., Olson, D., Podesta, G., 2002. Statistics of Brazil of current rings observed from AVHRR: 1993 to 1998. Geophys. Res. Lett. 29 (16), 1811—1814.
  • [27] Lentini, C. A. D., Podestá, G. P., Campos, E. J. D., Olson, D. B., 2001. Sea surface temperature anomalies on the western South Atlantic from 1982 to 1994. Continent. Shelf Res. 21 (1), 89—112.
  • [28] Lovallo, M., Telesca, L., 2011. Complexity measures and information planes of X-ray astrophysical sources. J. Stat. Mech. Theory Exp. P03029.
  • [29] Maamaatuaiahutapu, K., Garçon, V., Provost, C., Mercier, H., 1998. Transports of the Brazil and Malvinas Currents at their Confluence. J. Mar. Res. 56 (2), 417—438.
  • [30] Martin, M. T., Pennini, F., Plastino, A., 1999. Fisher's information and the analysis of complex signals. Phys. Lett. A 256 (2—3), 173—180.
  • [31] Martin, M. T., Perez, J., Plastino, A., 2001. Fisher information and nonlinear dynamics. Physica A 291 (1—4), 523—532.
  • [32] Matano, R. P., 1993. On the separation of the Brazil current from the coast. J. Phys. Oceanogr. 23 (1), 79—90.
  • [33] Matano, R. P., Schlax, M. G., Chelton, D. B., 1993. Seasonal variability in the South Atlantic. J. Geophys. Res. 98 (C10), 18027—18035.
  • [34] McClain, C. R., Cleave, M., Feldman, G., Gregg, W., Hooker, S., Kuring, N., 1998. Science quality SeaWiFS data for global biosphere research. Sea Technol. 39 (9), 10—14.
  • [35] McClain, E. P., Pichel, W. G., Walton, C. C., 1985. Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res. 90 (C6), 11587—11601.
  • [36] Memery, L., Arhan, M., Alvarez-Salgado, X. A., Messias, M.-J., Mercier, H., Castro, C. G., Rios, A. F., 2000. The water masses along the western boundary of the south and equatorial Atlantic. Prog. Oceanogr. 47 (1), 69—98.
  • [37] Morel, X., Lucas, M. A., Dos Santos, F., 2014. A Lagrangian study of the Brazil—Malvinas confluence: Lagrangian coherent structures and several Lyapunov exponents. J. Oper. Oceanogr. 7 (2), 13—23.
  • [38] Njoku, E. G., 1985. Satellite-derived sea surface temperature: workshop comparisons. Bull. Am. Meteorol. Soc. 66 (3), 274—281.
  • [39] Njoku, E. G., Barnett, T. P., Laurs, R. M., Vastano, A. C., 1985. Advances in satellite sea surface temperature measurement and oceanographic applications. J. Geophys. Res. 90 (C6), 573—586.
  • [40] Olson, D. B., Podesta, G. P., Evans, R. H., Brown, O. B., 1988. Temporal variations in the separation of Brazil and Malvinas currents. Deep Sea Res. 35 (12), 1971—1990.
  • [41] Osborne, A. R., Kirwan, A. D., Provenzale, A., Bergamasco, L., 1986. A search for chaotic behavior in large and mesoscale motions in the Pacific Ocean. Physica D 23 (1—3), 75—83.
  • [42] Peterson, R. G., Stramma, L., 1990. Upper-level circulation in the South Atlantic Ocean. Prog. Oceanogr. 26 (1), 1—73.
  • [43] Podesta, G. P., Brown, O. B., Evans, R. H., 1991. The annual cycle of satellite-derived sea surface temperature in the southwestern Atlantic Ocean. J. Climate 4 (4), 457—467.
  • [44] Provost, C., Le Traon, P. Y., 1993. Spatial and temporal scales in altimetric variability in the Brazil—Malvinas Current Confluence region: dominance of the semiannual period and large spatial scales. J. Geophys. Res. 98 (C10), 18037—18051.
  • [45] Raykar, V. C., Duraiswami, R., 2006. Fast optimal bandwidth selection for kernel density estimation. In: Proceedings of the Sixth SIAM International Conference on Data Mining, Bethesda, April 2006, 524—528.
  • [46] Saraceno, M., Provost, C., Lebbah, M., 2006. Biophysical regions identification using an artificial neuronal network: a case study in the South Western Atlantic. Adv. Space Res. 37 (4), 793—805.
  • [47] Saraceno, M., Provost, C., Piola, A., Bava, J., Gagliardini, A., 2004. Brazil Malvinas frontal system as seen from 9 years of advanced very high resolution radiometer data. J. Geophys. Res. 109 (5), C05027, http://dx.doi.org/10.1029/2003JC002127.
  • [48] Shannon, C. E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379—423, 623—656.
  • [49] Speich, S., Blanke, B., Cai, W., 2007. Atlantic meridional overturning and the Southern Hemisphere supergyre. Geophys. Res. Lett. 34 (23), L23614, http://dx.doi.org/10.1029/2007GL031583.
  • [50] Stammer, D., 1997. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr. 27 (8), 1743—1769.
  • [51] Telesca, L., Lasaponara, R., 2005. Discriminating dynamical patterns in burned and unburned vegetational covers by using SPOT-VGT NDVI data. Geophys. Res. Lett. 32 (21), L21401, http://dx.doi. org/10.1029/2005GL024391.
  • [52] Telesca, L., Lasaponara, R., 2006. Pre- and post-fire behavioral trends revealed in satellite NDVI time series. Geophys. Res. Lett. 33 (14), L14401, http://dx.doi.org/10.1029/2006GL026630.
  • [53] Telesca, L., Lovallo, M., 2011. Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the Fisher—Shannon information plane. J. Stat. Mech. P07001, 31 pp.
  • [54] Telesca, L., Lovallo, M., Carniel, R., 2010. Time-dependent Fisher information measure of volcanic tremor before 5 April 2003 paroxysm at Stromboli volcano, Italy. J. Volcanol. Geotherm. Res. 195 (1), 78—82.
  • [55] Telesca, L., Lovallo, M., Hsu, H.-L., Chen, C.-C., 2011. Analysis of dynamics in magnetotelluric data by using the Fisher—Shannon method. Physica A 390 (7), 1350—1355.
  • [56] Telesca, L., Lovallo, M., Ramirez-Rojas, A., Angulo-Brown, F., 2009. A nonlinear strategy to reveal seismic precursory signatures in earth- quake-related self-potential signals. Physica A 388 (10), 2036—2040.
  • [57] Tokinaga, H., Tanimoto, Y., Xie, S. P., 2005. SST-induced surface wind variations over the Brazil—Malvinas Confluence: satellite and in situ observations. J. Climate 18 (17), 3470—3482.
  • [58] Troudi, M., Alimi, A. M., Saoudi, S., 2008. Analytical plug-in method for kernel density estimator applied to genetic neutrality study. EURASIP J. Adv. Signal Process. 2008 Article ID 739082, 8 pp.
  • [59] Turiel, A., Isern-Fontanet, J., García-Ladona, E., Font, J., 2005. Multifractal method for the instantaneous evaluation of the stream function in geophysical flows. Phys. Rev. Lett. 95 (10), 104502.
  • [60] Vigan, X., Provost, C., Podesta, G., 2000. Sea surface velocities from sea surface temperature image sequences 2. Application to the Brazil—Malvinas Confluence area. J. Geophys. Res. 105 (C8), 19515—19534.
  • [61] Vivier, F., Provost, C., 1999. Volume transport of the Malvinas Current: can the flow be monitored by TOPEX/POSEIDON. J. Geophys. Res. 104 (C9), 21105—21122.
  • [62] Wainer, I., Gent, P., Goni, G., 2000. Annual cycle of the Brazil Malvinas Confluence region in the National Center for Atmospheric Research climate system model. J. Geophys. Res. 105 (C11), 167—177.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0b72f95f-aecf-4824-b5b7-e4153190c482
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.