Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2019 | nr 9 | 40--44
Tytuł artykułu

Nanoporowaty grafen – nowy materiał do wytwarzania półprzepuszczalnych membran

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Nanoporous graphene – novel material for production of semipermeable membranes
Języki publikacji
PL
Abstrakty
PL
W ostatnich dziesięcioleciach pojawiło się wiele nowych i obiecujących materiałów (np. nanorurki węglowe, nanoporowaty grafen i tlenek grafenu), które mogą zostać wykorzystane w produkcji membran o dużej efektywności odsalania wody i oczyszczania ścieków. W artykule przedstawiono metody syntezy membran kompozytowych opartych na grafenie, ich właściwości i możliwości aplikacyjne. Omówiono również funkcje chemiczne i fizyczne grafenu oraz jego pochodnych, które wpływają na efektywność odsalania wody i właściwości anty-foulingowe. Przedstawiono metody funkcjonalizacji grafenu i jego pochodnych, zwiększające stabilność warstwy aktywnej, retencję soli, przepuszczalność wody, oraz mechanizm transportu jonów i zmniejszania foulingu. Membrany wykonane z tych materiałów pozwalają na osiągnięcie znacznie wyższego strumienia wody/permeatu niż stosowane obecnie poliamidowe cienkowarstwowe membrany kompozytowe do RO. Przedstawiono również aktualny stan wiedzy oraz wyzwania jakie należy rozwiązać w wytwarzaniu nanokompozytowych membran z grafenu i jego pochodnych.
EN
In recent decades, novel and promising materials (e.g. carbon nanotubes, nanoporous graphene and graphene oxide) suitable to be used in manufacturing of high-capacity membranes for water desalination and water and wastewater treatment have been developed. Membranes made of these materials enable to obtain significantly higher water/permeate fluxes than currently used thin film composite polyamide membranes. In this paper methods of synthesis of membranes containing graphene and its derivatives, their properties and application areas have been discussed. Chemical and physical functions of graphene and graphene oxide influencing water desalination efficiency and antifouling properties were also described. Additionally, methods of functionalization and techniques of graphene and graphene-derivatives processing enhancing membranes’ active layer stability, retention of salts, water flux, ions transport mechanism and fouling decrease, are also presented.
Wydawca

Czasopismo
Rocznik
Tom
Strony
40--44
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
  • Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie
  • Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, michal.bodzek@ipis.zabrze.pl
Bibliografia
  • [1] Qadir M., Sharma B. R., Bruggeman A., Choukr-Allah R., Karajeh F. (2007). Nonconventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agric. Water Manag., 87, 2-22.
  • [2] Songa N., Gao X., Mac Z., Wanga X., Weia Y., Gao C. (2018). A review of graphene-based separation membrane: Materials, characteristics, preparation and applications, Desalination, 437, 59-7.
  • [3] Elimelech M., Phillip W. A. (2011). The future of seawater desalination: energy, technology, and the environment. Science, 333, 712-717
  • [4] Miller S., Shemer H., Semiat R. (2014). Energy and environmental issues in desalination. Desalination, 366, 2-8.
  • [5] Werber J. R., Osuji C. O., Elimelech M. (2016). Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater., 1, 16018.
  • [6] Lee K. P., Arnot T. C., Mattia D. (2011). A review of reverse osmosis membrane materials for desalination - development to date and future potential. J. Membr. Sci., 370, 122.
  • [7] Fane, C. Tang, R. Wang R. (2011). Chap. 4. Water Quality Enngenering. P. Wilderer (Eds.), Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Treatise on Water Science, 301-335. Elsevier Science.
  • [8] Matin A., Khan Z., Zaidi S.M.J., Boyce M. C. (2011). Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention. Desalination, 281, 1-16.
  • [9] Greenlee L. F., Lawler D. F., Freeman B. D., Marrot B., Moulin P. (2009). Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res., 43, 2317-2348.
  • [10] Amiri M. C., Samiei M. (2007). Enhancing permeate flux in a RO plant by controlling membrane fouling. Desalination, 207, 361-369.
  • [11] Yang R., Xu J., Ozaydin-Ince G., Wong S. Y., Gleason K. K. (2011). Surface-Tethered Zwitter ionic ultrathin antifouling coatings on reverse osmosis membranes by initiated chemical vapor deposition. Chem. Mater., 23, 1263-1272.
  • [12] Misdan N., Lau W. J., Ismail A. F. (2012). Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane - current development, challenges and future prospects. Desalination, 287, 228-237.
  • [13] Manawi Y., Kochkodan V., Ali Hussein M., Khaleel M. A., Khraisheh M., Hilal N. (2016). Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination, 391, 69-88.
  • [14] Goh P. S., Ismail A. F., Hilal N. (2016). Nanoenabled membranes technology: Sustainable and revolutionary solutions for membranę desalination? Desalination, 380, 100-104.
  • [15] Hegab H. M., Zou L. (2015). Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. J. Memb Sci., 484, 95-106.
  • [16] Cohen-Tanugi D., J. C. Grossman. (2012). Water desalination across nanoporous graphene. Nano Lett., 12, 3602-3608.
  • [17] Das R., Ali M. E., Abd Hamid S. B., Ramakrishna S., Chowdhury Z. Z. (2014). Carbon nanotube membranes for water purification: a bright future inwater desalination. Desalination, 336, 97-109.
  • [18] Zhao H., Qiu S., Wu L., Zhang L., Chen H., Gao C. (2014). Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J. Membr. Sci., 450, 249-256.
  • [19] Das R., Abd Hamid S. B., Ali ME, Ismail A. F., Annuar MSM, Ramakrishna S. (2014). Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination, 354, 160-179.
  • [20] Song X., Wang L., Tang C. Y., Wang Z., Gao C. (2015). Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process. Desalination, 369, 1-9.
  • [21] Xue S.-M., Xu Z.-L., Tang Y.-J., Ji C.-H. (2016). Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs). ACS Appl. Mater. Interfaces, 8, 19135-19144.
  • [22] Tian M., Wang R., Goh K., Liao Y., Fane A. G. (2015). Synthesis and characterization of high-performance novel thin film nanocomposite PRO membranes with tiered nanofiber support reinforced by functionalized carbon nanotubes. J. Membr. Sci., 486, 151-160.
  • [23] Khalid A., Al-Juhani A. A., Al-Hamouz O. C., Laoui T., Khan Z., Atieh M. A.(2015). Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination. Desalination, 367, 134-144.
  • [24] Tian M., Wang Y.-N., Wang R. (2015). Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes. Desalination, 370, 79-86.
  • [25] Goh P. S., Ismail A. F., (2015). Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology. Desalination, 356, 115-28.
  • [26] Surwade S. P., Smirnov S. N., Vlassiouk I. V., Unocic R. R., Veith G. M., Dai S., Mahurin S. M. (2015). Water desalination using nanoporous single-layer Graphene. Nat. Nanotechnology, 10, 459-464.
  • [27] Cohen-Tanugi D., Grossman J. C. (2015). Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination, 366, 59-70.
  • [28] Hung W.-S., An Q.-F., De Guzman M., Lin H.-Y., Huang S.-H., Liu W.-R., Hu C.-C., Lee K.-R., Lai J.-Y. (2014). Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic Graphene oxide. Carbon, 68, 670-677.
  • [29] Mollahosseini A., Rahimpour A. (2014). Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate, J. Ind. Eng. Chem. 20, 1261-1268.
  • [30] Ma X.-H., Yang Z., Yao Z.-K., Xu Z.-L., Tang C. Y. (2017). A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. J. Membr. Sci. 525, 269-276.
  • [31] Abraham J., Vasu K. S., Williams C. D., Gopinadhan K., Su Y., Cherian C. T., Dix J., Prestat E., Haigh S. J., Grigorieva I. V., Carbone P., Geim A. K., Nair R. R. (2017). Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546-545.
  • [32] Daer S., Kharraz J., Giwa A., Hasan S. W. (2015). Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination, 367, 37-48.
  • [33] Perreault F., Tousley M. E., Elimelech M. (2014). Thin-film composite polyamide membranes functionalized with biocidal Graphene oxide nanosheets. Environ. Sci. Technol. Lett., 1, 71-76.
  • [34] Ganesh B. M., Isloor A. M., Ismail A. F. (2013). Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination, 313, 199-207.
  • [35] Geim A. K. (2009). Graphene: status and prospects. Science, 324, 1530-1534.
  • [36] Bunch J. S., Verbridge S. S., Alden J. S., Van Der Zande A. M., Parpia J. M., Craighead H. G., McEuen P. L. (2008). Impermeable atomic membranes from Graphene sheets. Nano Lett., 8, 2458-2462.
  • [37] Blankenburg S.M.L., Bieri M., Fasel R., Mullen K., Pignedoli C. A., Passerone D. (2010). Porous graphene as an atmospheric nanofilter. Small, 6, 2266-2271.
  • [38] Kim M., Safron N. S., Han E., Arnold M. S., Gopalan P. (2010). Fabrication and characterization of large-area, semiconducting nano-perforated graphene materials. Nano Lett., 10, 1125-1131.
  • [39] Cohen-Tanugi D., McGovern R. K., Dave S. H., Lienhard J. H., Grossman J. C. (2014). Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci., 7, 1134-1141.
  • [40] Marinho B., Ghislandi M., Tkalya E., Koning C. E., deWith G. (2012). Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol., 221, 351-358.
  • [41] Lee C., Wei X., Kysar J. W., Hone J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385-388.
  • [42] Yoo B. M., Shin H. J., Yoon H. W., Park H. B. (2014). Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci., 131, 39628.
  • [43] Pandey R. P., Shukla G., Manohar M., Shahi V. K. (2017). Graphene oxide based nanohybrid proton exchange membranes for fuel cel applications: an overview. Adv.Colloid Interface, 240,15-30.
  • [44] Wang J., Dou W., Zhang X., Han W., Mu X., Zhang Y., Zhao X., Chen Y., Yang Z., Su Q., Xie E., Lan W., Wang X. (2017). Embedded Ag quantum dots into interconnected Co3O4 nanosheets grown on 3D graphene networks for high stable and flexible supercapacitors. Electrochim. Acta, 224, 260-268.
  • [45] Lei H., Yan T., Wang H., Shi L., Zhang J. (2015). Graphene-like carbon nanosheets prepared by a Fe-catalyzed glucose-blowing method for capacitive deionization. J. Mater. Chem. A, 11, 5934-5941.
  • [46] Wang H., Yuan X., Wu Y., Huang H., Peng X., Zeng G., Zhong H., Liang J., Ren M. (2013). Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and waste gas and hydrogen storage/generation. Adv. Colloid Interf. Sci., 195-196, 19-40.
  • [47] Avouris P., Dimitrakopoulos C. (2012). Graphene: synthesis and applications. Mater. Today, 15, 86-97.
  • [48] Wang E. N., Karnik R. (2012). Graphene cleans up water. Nat. Nanotechnol., 7, 552-554.
  • [49] Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., Banerjee S. K., Colombo L., Ruoff R. S. (2009). Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324, 1312-1314.
  • [50] Berry V. (2013). Impermeability of Graphene and its applications. Carbon, 62, 1-10.
  • [51] Becton M., Zhang L., Wang X. (2014). Molecular dynamics study of programmable nanoporous graphene, J. Nanomech., Micromech. 4, B4014002.
  • [52] Liu L., Ryu S., Tomasik M. R., Stolyarova E., Jung N., Hybertsen M. S., Steigerwald M. L., Brus L. E., Flynn G. W. (2008). Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett., 8, 1965-1970.
  • [53] Russo C. J., Golovchenko J. A. (2012). Atom-by-atom nucleation and growth of Graphene nanopores. Proc. Natl. Acad. Sci., 109, 5953-5957.
  • [54] Yang R., Zhang L., Wang Y., Shi Z., Shi D., Gao H., Wang E., Zhang G. (2010). An anisotropic etching effect in the graphene basal plane. Adv. Mater., 22, 4014-4019.
  • [55] Xie G., Yang R., P. Chen, Zhang J., Tian X., Wu S., Zhao J., Cheng M., Yang W., Wang D., He C., Bai X., Shi D., Zhang G. (2014). A general route towards defect and pore engineering in graphene. Small, 10, 2280-2284.
  • [56] Cheng Y. C., Kaloni T. P., Zhu Z. Y., Schwingenschlögl U. (2012). Oxidation of graphene in ozone under ultraviolet light. Appl. Phys. Lett., 101, 73110.
  • [57] Huh, S., Park J., Kim Y. S., Kim K. S., Hong B. H., Nam J.(2011). UV/ozone-oxidized largescale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS Nano, 5, 9799-9806.
  • [58] Gethers M., Thomas J. C., Jiang S., Weiss N. O., Duan X. (2015). Holey graphene as a weed barrier for molecules. ACS Nano 9, 10909–10915.
  • [59] Jiang D.-e., Cooper V. R., Dai S. (2009). Porous graphene as the ultimate membrane for gas separation. Nano Lett., 9, 4019-4024.
  • [60] Sun P., Zhu M., Wang K., Zhong M., Wei J., Wu D., Xu Z., Zhu H. (2012). Selective ion penetration of graphene oxide membranes. ACS Nano, 7, 428-437.
  • [61] Konatham D., Yu J., Ho T. A., Striolo A. (2013). Simulation insights for graphene-based water desalination membranes. Langmuir, 29, 11884-11897.
  • [62] Han Y., Xu Z., Gao C. (2013). Ultrathin Graphene nanofiltration membrane for water purification. Adv. Funct. Mater., 23, 3693-3700.
  • [63] Joshi R. K., Carbone P., Wang F. C., Kravets V. G., Su Y., Grigorieva I. V., Wu H. A., Geim A. K., Nair R. R. (2014). Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 343, 752-754.
  • [64] Mahmoud K. A., Mansoor B., Mansour A., Khraisheh M. (2015). Functional graphene nanosheets: the next generation membranes for water desalination. Desalination, 356, 208-225.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0b4296a8-76e1-4798-b65a-927b23262f51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.