Czasopismo
2021
|
Vol. 69, no. 1
|
61--68
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Our purpose here is to continue the study of the ergodic decomposition for actions defined by amenable groups, started in [R. Zaharopol, Colloq. Math. 165 (2021)]. We consider the set Γ(w)αcpie defined in the above-mentioned paper, and we prove that it is Borel measurable and of maximal probability.
Rocznik
Tom
Strony
61--68
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
autor
- Radu Zaharopol 2062, Pauline Blvd., Apt. 2B Ann Arbor, MI 48103-5130, USA, radu.zaharopol@gmail.com
Bibliografia
- [1] E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2001), 259-295.
- [2] D. T. H. Worm and S. C. Hille, Ergodic decompositions associated to regular Markov operators on Polish spaces, Ergodic Theory Dynam. Systems 31 (2011), 571–597.
- [3] D. Worm, Semigroups on spaces of measures, Ph.D. thesis, Thomas Stieltjes Institute for Mathematics, 2010.
- [4] R. Zaharopol, The ergodic decomposition defined by actions of amenable groups, Colloq. Math. 165 (2021), 285–319.
- [5] R. Zaharopol, An ergodic decomposition defined by transition probabilities, Acta Appl. Math. 104 (2008), 47–81.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0b3c4ec4-524a-49ae-89d7-03dce299966f