Czasopismo
2023
|
Vol. 43, Fasc. 2
|
241--246
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this short note is to give an operator-valued free Poincarè inequality, which provides a simple proof to (an improvement of) a lemma of Voiculescu (2000) asserting that the kernel of the free difference quotient is exactly the coefficients.
Czasopismo
Rocznik
Tom
Strony
241--246
Opis fizyczny
Bibliogr. 7 poz..
Twórcy
autor
- Graduate School of Mathematics, Nagoya University, Nagoya, 464-0862, Japan, hyuga.ito.e6@math.nagoya-u.ac.jp
Bibliografia
- [1] U. Haagerup, The Grothendieck inequality for bilinear forms on C∗-algebras, Adv. Math. 56 (1985), 93-116.
- [2] H. Ito, Differential calculus for fully matricial functions I, preprint (2023).
- [3] H. Ito, Free analysis on non-commutative Grassmannian manifolds, in preparation.
- [4] J. Mingo and R. Speicher, Free Probability and Random Matrices, Fields Inst. Monogr. 35, Springer, 2017.
- [5] D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory V. Noncommutative Hilbert transforms, Invent. Math. 132 (1998), 189-227.
- [6] D. Voiculescu, The coalgebra of the free difference quotient and free probability, Int. Math. Res. Notices 2000, 79-106.
- [7] Problems posed during the workshop “Free Analysis” at American Institute of Mathematics, 2006; https://aimath.org/WWN/freeanalysis/freeanalysis.pdf.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0b2dac23-4cae-42e3-a893-1107fcc3f87b