Czasopismo
2014
|
Vol. 47, nr 4
|
989--993
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
It is proved that the Banach–Mazur distance between arbitrary two convex quadrangles is at most 2. The distance equals 2 if and only if the pair of these quadrangles is a parallelogram and a triangle.
Czasopismo
Rocznik
Tom
Strony
989--993
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Institute of Mathematics and Physics, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland, lassak@utp.edu.pl
Bibliografia
- [1] E. D. Gluskin, Diameter of the Minkowski compactum is approximately equal to n, Funct. Anal. Appl. 15 (1981), 57–58.
- [2] B. Grünbaum, Measures of symmetry for convex sets, 1963 Proc. Sympos. Pure Math., Vol. VII, 233–270, Amer. Math. Soc., Providence, R.I.
- [3] F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, 1948, 187–204.
- [4] M. Lassak, Approximation of convex bodies by triangles, Proc. Amer. Math. Soc. 115 (1992), 207–210.
- [5] M. Lassak, Banach–Mazur distance of planar convex bodies, Aequationes Math. 74 (2007), 282–286.
- [6] W. Stromquist, The maximum distance between two-dimensional Banach spaces, Math. Scand. 48 (1981), 205–225.
- [7] S. J. Szarek, Convexity, complexity and high dimensions, Proceedings of the International Congress of Mathematicians, Madrid, Spain, August 22–30, 2006, Volume II: Invited Lectures, Zürich: European Mathematical Society (EMS), 1599–1621.
- [8] N. Tomczak-Jaegermann, Banach–Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman Scientifical and Technical, New York, 1989.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0aff9a60-76fb-4b77-abbf-de1edd5834a1