Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | No. 2 | art. no. 757
Tytuł artykułu

Assessment of the product carbon footprint of office equipment across the entire life cycle

Treść / Zawartość
Warianty tytułu
PL
Ocena śladu węglowego produktu sprzętu biurowego w całym cyklu życia
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the article is to publicise the issue of carbon footprint emission from office equipment because this problem is not yet widely recognised in the ICT industry. Methodology/approach: The product carbon footprint (PCF) of various information and communication technologies (ICT) was assessed - 196 products of 12 groups representing a broad spectrum of office equipment - covering the entire life cycle (LCA) from production to disposal. Findings: The level of carbon footprint of a given office device depends on its size, including its energy demand. It should be noted that although smaller devices individually have a smaller carbon footprint, due to their common use (many pieces), they may generate emissions similar to larger ones. Originality/value: The results of the carbon footprint statistics of ICT devices included in the result section may constitute valuable input for companies to calculate the carbon footprint in offices. They can also be used as a data set for the carbon footprint calculator of ICT devices.
PL
Cel: Celem artykułu jest nagłośnienie zagadnienia emisji śladu węglowego ze sprzętu biurowego, gdyż problem ten nie jest jeszcze powszechnie rozpoznany w branży ICT. Metodologia/podejście: Oceniono ślad węglowy produktu (PCF) różnych urządzeń informacyjno-komunikacyjnych (ICT) – 196 produktów z 12 grup reprezentujących szerokie spektrum sprzętu biurowego – obejmujący cały cykl życia (LCA) od produkcji do utylizacji. Wyniki: Poziom śladu węglowego danego urządzenia biurowego zależy od jego wielkości, w tym od zapotrzebowania na energię. Należy zaznaczyć, że choć mniejsze urządzenia indywidualnie mają mniejszy ślad węglowy, to ze względu na ich powszechne użytkowanie (wiele sztuk) mogą generować emisję podobną do większych. Oryginalność/wartość: Wyniki statystyk śladu węglowego urządzeń ICT zawarte w sekcji wyników mogą stanowić cenny wkład dla firm do obliczenia śladu węglowego w biurach. Można je również wykorzystać jako zbiór danych, do kalkulatora śladu węglowego urządzeń ICT.
Wydawca

Rocznik
Tom
Strony
art. no. 757
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Institute of Logistics, Faculty of Engineering Management, Poznan University of Technology, Jacka Rychlewskiego Street 2, 60-965 Poznan, Poland, hubert.wojciechowski@put.poznan.pl
  • Institute of Logistics, Faculty of Engineering Management, Poznan University of Technology, Jacka Rychlewskiego Street 2, 60-965 Poznan, Poland
Bibliografia
  • ASUS. (n.d.). Product desing & manufacturing. https://www.asus.com/content/product-design-manufacturing/
  • Awan, U., Sroufe, R., & Shahbaz, M. (2021). Industry 4.0 and the circular economy: A literature review and recommendations for future research. Business Strategy and the Environment, 30(4), 2038-2060. https://doi.org/10.1002/bse.2731
  • Chebaeva, N., Lettner, M., Wenger, J., Schöggl, J. P., Hesser, F., Holzer, D., & Stern, T. (2021). Dealing with the eco-design paradox in research and development projects: The concept of sustainability assessment levels. Journal of Cleaner Production, 281, 125232. https://doi.org/10.1016/j.jclepro.2020.125232
  • Chinn, M. D., & Fairlie, R. W. (2007). The determinants of the global digital divide: A cross-country analysis of computer and internet penetration. Oxford Economic Papers, 59(1), 16-44. https://doi.org/10.1093/oep/gpl024
  • Choi, C., & Yi, M. H. (2018). The Internet, R&D expenditure and economic growth. Applied Economics Letters, 25(4), 264-267. https://doi.org/10.1080/13504851.2017.1316819
  • Chovancová, J., Petruška, I., & Litavcová, E. (2020). Dependence of Co2 Emissions on Energy Consumption and Economic Growth in The European Union: A Panel Threshold Model. Economics and Environment, 78(3), 73-89. https://doi.org/10.34659/2021/3/21
  • Cillo, V., Petruzzelli, A. M., Ardito, L., & Del Giudice, M. (2019). Understanding sustainable innovation: A systematic literature review. Corporate Social Responsibility and Environmental Management, 26(5), 1012-1025. https://doi.org/10.1002/csr.1783
  • Energy Star. (n.d.). The International EPD System. https://www.energystar.gov/
  • EPD. (n.d.). The International EPD System. https://www.environdec.com/
  • EPEAT. (n.d.). EPEAT is the premier global ecolabel for electronics and technology products. https://epeat.net/
  • Fu, B., Shu, Z., & Liu, X. (2018). Blockchain enhanced emission trading framework in fashion apparel manufacturing industry. Sustainability, 10(4), 1105. https://doi.org/10.3390/su10041105
  • Gaubinger, K., & Rabl, M. (2013). Structuring the front end of innovation. In O. Gassmann & F. Schweitzer (Eds.), Management of the Fuzzy Front End of Innovation (pp. 15-30). Cham: Springer. https://doi.org/10.1007/978-3-319-01056-4_2
  • Greenly. (2022). Guide : The ultimate guide to Carbon Footprint 2022. https://greenly.earth/en-gb/ressources/barometer-carbon-footprint-2022
  • Greenly. (n.d.). Lifecycle assessment Infographic. https://greenly.earth/en-gb/ressources/life-cycle-assessment-infographic
  • Guziana, B., & Dobers, P. (2013). How sustainability leaders communicate corporate activities of sustainable development. Corporate Social Responsibility and Environmental Management, 20(4), 193-204. https://doi.org/10.1002/csr.1292
  • HP. (n.d.). Products. https://support.hp.com/us-en/products
  • Kaware, S. S., & Sain, S. K. (2015). ICT Application in Education: An Overview. International Journal of Multidisciplinary Approach and Studies, 2(1), 25-32. http://ijmas.com/upcomingissue/04.01.2015.pdf
  • Kimani, S. M., Kanno, T., Tawaraya, K., & Cheng, W. (2020). Floating Azolla Cover Influences Evapotranspiration from Flooded Water Surfaces. Wetlands, 40(5), 1425-1432. https://doi.org/10.1007/s13157-020-01282-9
  • Kozáková, J., Skýpalová, R., & Pieńkowski, D. (2024). Environmental responsibility of corporate management in the Visegrad region – comparative study of the Czech Republic, Poland and Slovakia. Economics and Environment, 87(4), 692. https://doi.org/10.34659/eis.2023.87.4.692
  • LG. (n.d.). Products application. https://www.lg.com/global/greener-products-application
  • Luthra, S., Kumar, A., Zavadskas, E. K., Mangla, S. K., & Garza-Reyes, J. A. (2020). Industry 4.0 as an enabler of sustainability diffusion in supply chain: an analysis of influential strength of drivers in an emerging economy. International Journal of Production Research, 58(5), 1505-1521. https://doi.org/10.1080/00207543.2019.1660828
  • Massaro, M., Secinaro, S., Dal Mas, F., Brescia, V., & Calandra, D. (2021). Industry 4.0 and circular economy: An exploratory analysis of academic and practitioners’ perspectives. Business Strategy and the Environment, 30(2), 1213-1231. https://doi.org/10.1002/bse.2680
  • McAloone, T. C., & Pigosso, D. C. A. (2017). Ecodesign implementation and LCA. In M. Hauschild, R. Rosenbaum & S. Olsen (Eds.), Life Cycle Assessment: Theory and Practice (pp. 545-576). Cham: Springer. https://doi.org/10.1007/978-3-319-56475-3_23
  • Panagiotopoulou, V. C., Stavropoulos, P., & Chryssolouris, G. A. (2022). A critical review on the environmental impact of manufacturing: a holistic perspective. The International Journal of Advanced Manufacturing Technology, 118, 603-625. https://link.springer.com/article/10.1007/s00170-021-07980-w
  • Pattara, C., Russo, C., Antrodicchia, V., & Cichelli, A. (2017). Carbon footprint as an instrument for enhancing food quality: overview of the wine, olive oil and cereals sectors. Journal of the Science of Food and Agriculture, 97(2), 396-410. https://doi.org/10.1002/jsfa.7911
  • Rondoni, A., & Grasso, S. (2021). Consumers behaviour towards carbon footprint labels on food: A review of the literature and discussion of industry implications. Journal of Cleaner Production, 301, 127031. https://doi.org/10.1016/j.jclepro.2021.127031
  • Tao, F., Zuo, Y., Xu, L. D., Lv, L., & Zhang, L. (2014). Internet of things and BOM-Based life cycle assessment of energy-saving and emission-reduction of products. IEEE Transactions on Industrial Informatics, 10(2), 1252-1261. https://doi.org/10.1109/TII.2014.2306771
  • Tokarski, D., & Bielecki, M. (2024). Conditions and possibilities of using e-logistics in manufacturing enterprises. Economics and Environment, 88(1), 725. https://doi.org/10.34659/eis.2024.88.1.725
  • van Capelleveen, G., Pohl, J., Fritsch, A., & Schien, D. (2018). The footprint of things: A hybrid approach towards the collection, storage and distribution of life cycle inventory data. EPiC Series in Computing, 52, 350-364. https://doi.org/10.29007/8pnj
  • Wiedmann, T., & Minx, J. (2007). A Definition of ‘ Carbon Footprint. ISAUK Research Report, 07-01. https://wiki.epfl.ch/hdstudio/documents/articles/a%20definition%20of%20carbon%20footprint.pdf
  • Wright, L. A., Kemp, S., & Williams, I. (2011). “Carbon footprinting”: Towards a universally accepted definition. Carbon Management, 2(1), 61-72. https://doi.org/10.4155/cmt.10.39
  • Zheng, J., & Wang, X. (2021). Can mobile information communication technologies (ICTs) promote the development of renewables?-evidence from seven countries. Energy Policy, 149, 112041. https://doi.org/10.1016/j.enpol.2020.112041
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0a66db91-5a1c-4dc8-be5d-4154737f92f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.