Czasopismo
2011
|
Vol. 59, no 2
|
151--164
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
For any continuous map f:M→M on a compact manifold M, we define SRB-like (or observable) probabilities as a generalization of Sinai–Ruelle–Bowen (i.e. physical) measures. We prove that f always has observable measures, even if SRB measures do not exist. We prove that the definition of observability is optimal, provided that the purpose of the researcher is to describe the asymptotic statistics for Lebesgue almost all initial states. Precisely, the never empty set O of all observable measures is the minimal weak∗ compact set of Borel probabilities in M that contains the limits (in the weak∗ topology) of all convergent subsequences of the empirical probabilities {(1/n)∑n−1j=0δfj(x)}n≥1, for Lebesgue almost all x∈M. We prove that any isolated measure in O is SRB. Finally we conclude that if O is finite or countably infinite, then there exist (countably many) SRB measures such that the union of their basins covers M Lebesgue a.e.
Słowa kluczowe
Rocznik
Tom
Strony
151--164
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Instituto de Matemática y Estadística Prof. Ing. Rafael Laguardia Facultad de Ingeniería Universidad de la República Av. Herrera y Reissig 565 C.P.11300, Montevideo, Uruguay , eleonora@fing.edu.uy
autor
- Instituto de Matemática y Estadística Prof. Ing. Rafael Laguardia Facultad de Ingeniería Universidad de la República Av. Herrera y Reissig 565 C.P.11300, Montevideo, Uruguay , enrich@fing.edu.uy
Bibliografia
- [AB07] A. Ávila and J. Bochi, Generic expanding maps without absolutely continuous invariant σ-finite measure, Math. Res. Lett. 14 (2007), 721–730.
- [BDV05] C. Bonatti, L. Diaz and M. Viana, Dynamics beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Encyclopaedia Math. Sci. 102, Springer, Berlin, 2005.
- [B-W03] C. Bonatti, C. Matheus, M. Viana and A. Wilkinson, Abundance of stable ergodicity, Comment. Math. Helv. 79 (2004), 753–757.
- [B71] R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377–397.
- [BR75] R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), 181–202.
- [BH98] H. Bruin and J. Hawkins, Examples of expanding C1 maps having no σ-finite invariant measure equivalent to Lebesgue, Israel J. Math. 108 (1998), 83–107.
- [C98] E. Colli, Infinitely many coexisting strange attractors, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 539–579.
- [GK07] T. Golenishcheva-Kutuzova and V. Kleptsyn, Convergence of the Krylov–Bogolyubov procedure in Bowen’s example, Mat. Zametki 82 (2007), 678–689 (in Russian); English transl.: Math. Notes 82 (2007), 608–618.
- [HY95] H. Hu and L. S. Young, Nonexistence of SRB measures for some diffeomorphisms that are almost Anosov, Ergodic Theory Dynam. Systems 15 (1995), 67–76.
- [K95] A. S. Kechris, Classical Descriptive Set Theory, Springer, Berlin, 1995.
- [K98] G. Keller, Equilibrium States in Ergodic Theory, London Math. Soc. Student Texts 42, Cambridge Univ. Press, Cambridge, 1998.
- [K04] —, Completely mixing maps without limit measure, Colloq. Math. 100 (2004), 73–76.
- [N74] S. Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9–18.
- [P99] J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque 261 (1999), 339–351.
- [PS82] Ya. B. Pesin and Ya. G. Sinai, Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynam. Systems 2 (1982), 417–438.
- [PS04] C. Pugh and M. Shub, Stable ergodicity, Bull. Amer. Math. Soc. 41 (2004), 1–41.
- [RY80] C. Robinson and L. S. Young, Nonabsolutely continuous foliations for an Anosov diffeomorphism, Invent. Math. 61 (1980), 159–176.
- [R76] D. Ruelle, A measure associated with axiom A attractors, Amer. J. Math. 98 (1976), 619–654.
- [S72] Ya. G. Sinai, Gibbs measures in ergodic theory, Russian Math. Surveys 27 (1972), no. 4, 21–69.
- [T82] Y. Takahashi, Entropy functional (free energy) for dynamical systems and their random perturbations, in: K. Itô (ed.), Stochastic Analysis, North-Holland Math. Library 32, North-Holland, 1982, 437–467.
- [T94] F. Takens, Heteroclinic attractors: time averages and moduli of topological conjugacy, Bol. Soc. Brasil. Mat. 25 (1994), 107–120.
- [V98] M. Viana, Dynamics: a probabilistic and geometric perspective, in: Proc. Int. Congress Math. (Berlin, 1988), Doc. Math. Extra Vol. I (1998), 395–416.
- [Y02] L. S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys. 108 (2002), 733–754.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-098468e0-3029-4820-a1b3-2e1eebaf2cef