Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 5 | 400--412
Tytuł artykułu

Research on the Use of Multifrequency Excitations for Energy Harvesting in a Combustion Engine

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research conducted around the world shows that energy harvesting (EH) systems can be used in modern vehicles powered by combustion, hybrid or electric engines. The efficiency of modern combustion engines is about 40%, the rest of the energy is lost and can be recovered to some extent. Therefore, the search is ongoing for systems that will use this part of the energy to power specific systems or micro-sensors installed in the vehicle. The article presents the possibilities of energy recovery from such vehicle systems as: energy recovered during braking, damping energy in the vehicle suspension, energy recovery from the exhaust system of an internal combustion engine and energy from the vibrations of the internal combustion engine. Based on the analysis of the literature on the presented research of various scientific centers and the author's experiment, it can be concluded that there is a huge potential for obtaining thermal energy from the engine exhaust system and the vehicle suspension system. A field that has not been explored much, but according to the authors also has energy potential, is energy recovery from the combustion engine suspension system in the vehicle's engine compartment. Preliminary research shows the possibility of mounting the energy recovery system in the engine compartment and the potential possibility of obtaining electricity in certain operating states of the combustion engine.
Wydawca

Rocznik
Strony
400--412
Opis fizyczny
Bibliogr. 137 poz., fig.
Twórcy
autor
  • Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland, j.caban@pollub.pl
  • Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland, p.staczek@pollub.pl
  • Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland, p.wolszczak@pollub.pl
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland, radoslaw.nowak@pw.edu.pl
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland, stanislaw.karczmarzyk@pw.edu.pl
Bibliografia
  • 1. Bukova B., Tengler J., Brumercikova E., Brumercik F., Kissova O. Environmental burden case study of RFID technology in logistics centre. Sensors 2023, 23(3): 1268.
  • 2. Gogola M., Kubal’ák S., Mik C., Ondruš J. The Cross-Regional Impact on the Transport Infrastructure of Small Town: the Case Study of Town Senec. Transport Means - Proceedings of the International Conference, 2021-October, 2021, 847–852.
  • 3. Pečman J., Stopka O., Rybicka I., Stopková M. Influence of road longitudinal terrain profile on vehicle kinetic energy recovery and mitigation of selected transport negative aspects. Transport Problems 2023, 18(4): 125–133.
  • 4. Blatnický M., Dižo J., Sága M., Molnár D., Slíva A. Utilizing dynamic analysis in the complex design of an unconventional three-wheeled vehicle with enhancing cornering safety. Machines 2023, 11(8): 842.
  • 5. Jilek P., Cerman J. Design of sliding frame system for two-wheeled vehicle. Transport Means – Proceedings of the International Conference 2020, 136–141.
  • 6. Podkowski K., Barszcz Z., Seńko J. FEM (Finite element method) numerical analyzes of the syrenka S201 car model. Lecture Notes in Mechanical Engineering 2017, 415–421.
  • 7. Figlus T., Szafraniec P., Skrúcaný T. Methods of measuring and processing signals during tests of the exposure of a motorcycle driver to vibration and noise. International Journal of Environmental Research and Public Health 2019, 16(17): 3145.
  • 8. Górnicka D., Szwedzka K. Vibration signal as a support for the processes production management in enterprises of the furniture industry. Vibrations in Physical Systems 2019, 30(2): 2019216.
  • 9. Śmieja M., Wierzbicki S., Kuriata M., Ciepliński T., Szumilas Ł. Visualization of vibrations in structural diagnoses of technical objects. Vibrations in Physical Systems 2019, 30(2): 2019205.
  • 10. Vrublevskyi O., Wierzbicki S. Measurement and theoretical analysis of the displacement characteristics of moving components in a solenoid injector in view of wave phenomena. Measurement: Journal of the International Measurement Confederation 2022, 187: 110323.
  • 11. Schmidová E., Neslušan M., Ondruš J., Trojan K., Pitoňák M., Klejch F., Ramesha S.K. Monitoring of plastic straining degree of components made of interstitial free steel after uniaxial tensile test by the use of Barkhausen noise technique. Steel Research International 2022, 93(5): 2100597.
  • 12. Szala M., Szafran M., Matijošius J., Drozd K. Abrasive wear mechanisms of S235JR, S355J2, C45,AISI 304, and Hardox 500 steels tested using garnet, corundum and carborundum abrasives. Advances in Science and Technology Research Journal 2023, 17(2): 147–160.
  • 13. Walczak M., Świetlicki A., Szala M., Turek M., Chocyk D. Shot peening effect on sliding wear in 0.9% NaCl of additively manufactured 17-4PH steel. Materials 2024, 17(6): 1383.
  • 14. Nieoczym A., Drozd K. Fractographic assessment and FEM energy analysis of the penetrability of a 6061-T aluminum ballistic panel by a fragment simulating projectile. Advances in Science and Technology Research Journal 2021, 15(1): 50–57.
  • 15. Okuniewski W., Walczak M., Szala M. Effects of shot peening and electropolishing treatment on the properties of additively and conventionally manufactured Ti6Al4V alloy: A review. Materials 2024, 17(4): 934.
  • 16. Sofronov D.S., Lebedynskiy O.M., Rucki M., Mateychenko P.V., Minenko S.S., Shaposhnyk A.M., Krzysiak Z. A novel method of TiOF2 particles synthesis out of fluoride solutions. Journal of Alloys and Compounds 2023, 966: 171646.
  • 17. Doluk E., Rudawska A., Miturska-Barańska I. Investigation of the surface roughness and Surface uniformity of a hybrid sandwich structure after machining. Materials 2022, 15: 7299.
  • 18. Podulka P., Macek W., Szala M., Kubit A., Das K.C., Królczyk G. Evaluation of high-frequency roughness measurement errors for composite and ceramic surfaces after machining. Journal of Manufacturing Processes 2024, 121: 150–171.
  • 19. Ratov B., Rucki M., Fedorov B., Hevorkian E., Siemiatkowski Z., Muratova S., Omirzakova E., Kuttyayev A., Mechnik V., Bondarenko N. Calculations on enhancement of polycrystalline diamond bits through addition of superhard diamond-reinforced elements. Machines 2023, 11(4): 453.
  • 20. Sasimowski E., Majewski Ł., Jachowicz T., Sąsiadek M. Experimental determination of coefficients for the renner model of the thermodynamic equation of state of the poly (Butylene succinate) and wheat bran biocomposites. Materials 2021, 14(18): 5293.
  • 21. Čechmánek D., Kohár R., Brumerčík F., Lukáč M., Fiačan J. Optimization of the injection mold runner system of the transport means plastic parts. Communications - Scientific Letters of the University of Žilina 2023, 25(3): B176–B185.
  • 22. Krasinskyi V., Dulebova L., Gajdos I., Krasinska O., Jachowicz T. Study of crystalline and thermal properties of nanocomposites based on Polyamide-6 and modified montmorillonite. Advances in Science and Technology Research Journal 2023, 17(6): 88–97.
  • 23. Pieniak D., Jedut R., Gil L., Kupicz W., Borucka A., Selech J., Bartnik G., Przystupa K., Krzysiak Z. Comparative evaluation of the tribological properties of polymer materials with similar shore hardness working in metal–polymer friction systems. Materials 2023, 16(2): 573.
  • 24. Novotný J., Jaskevič M., Mamoń F., Mareš J., Horký R., Houška P. Manufacture and Characterization of Geopolymer Coatings Deposited from Suspensions on Aluminium Substrates. Coatings 2022, 12: 1695.
  • 25. Ostapiuk M. Behavior of microcapsules in FML under different pressure of production in autoclave. International Journal of Advanced Manufacturing Technology 2022, 123(7–8): 2469–2480.
  • 26. Tavodová M., Beno P., Monkova K., Stanceková D. Innovation of the production process of coin dies to increase their service life. Procedia Structural Integrity 2023, 46: 131–135.
  • 27. Van T.N., Thanh T.L., Van T.N., Naprstkova N. Smartphone-based data acquisition method for modelling 3D printed arm casts. Manufacturing Technology 2023, 23(2): 260–267.
  • 28. Bulzak T., Winiarski G., Wójcik Ł., Szala M. Application of numerical simulation and physical modeling for verifying a cold forging process for rotary sleeves. Journal of Materials Engineering and Performance 2022, 31(3): 2267–2280.
  • 29. Myśliwiec P., Śliwa R.E., Ostrowski R., Bujny M., Zwolak M. Effect of welding parameters and metal arrangement of the AA2024-T3 on the quality and strength of FSW lap joints for joining elements of landing gear beam. Archives of Metallurgy and Materials 2020, 65(3): 1205–1216.
  • 30. Silva A.P., Węgrzyn T., Szymczak T., Szczucka-Lasota B., Łazarz B. Hardox 450 Weld in micro- structural and mechanical approaches after welding at micro-jet cooling. Materials 2022, 15(20): 7118.
  • 31. Winiarski G. Theoretical and experimental study on the effect of selected parameters in a new method of extrusion with a movable sleeve. Materials 2022, 15(13): 4585.
  • 32. Das G., Chaturvedi S., Naqash T.A., Hussain M.W., Saquib S., Suleman G., Sindi A.S., Shafi S., Sharif R.A. Comparative in-vitro microscopic evaluation of vertical marginal discrepancy, microhardness, and Surface roughness of nickel–chromium in new and recast alloy. Scientific Reports 2023, 13(1): 16673.
  • 33. Skic A., Beer-Lech K., Szala M., Kamiński M., Krzysiak Z., Pałka K. Structural and tribological properties of the re-casted dental NiCrMo alloy. Journal of Physics: Conference Series 2021, 2130, 113: 012023.
  • 34. Szczucka-Lasota B., Węgrzyn T., Łazarz B., Kamińska J.A. Tire pressure remote monitoring system reducing the rubber waste. Transportation Research Part D: Transport and Environment 2021, 98: 102987.
  • 35. Derkacz A.J., Dudziak A., Stopka O., Stopková M. Profitability determinants of transport service and warehouse enterprises a case study from Poland. Periodica Polytechnica Transportation Engineering 2023, 51(3): 275–286.
  • 36. Madlenak R., Madlenakova L., Toth T., Neszmelyi G.I. Global postal e-commerce delivery network - trade solution for small and medium enterprises to enter global market. Engineering for Rural Development 2023, 22: 777–783.
  • 37. Stopka O., Stopkova M., Rybicka I., Gross P., Jeřábek K. Use of activity-based costing approach for cost management in a railway transport enterprise. Scientific Journal of Silesian University of Technology.Series Transport 2021, 111: 151–160.
  • 38. Dudziak A., Stoma M., Osmólska E. Analysis of consumer behaviour in the context of the place of purchasing food products with particular emphasis on local products. International Journal of Environmental Research and Public Health 2023, 20(3): 2413.
  • 39. Górnicka D., Klekot G., Michalik M. Examinations of acoustic signals of patients having snoring problem. Journal of Vibroengineering 2017, 19(7): 5553–5559.
  • 40. Karpiński R., Szabelski J., Krakowski P., Jojczuk M., Jonak J., Nogalski A. Evaluation of the effect of selected physiological fluid contaminants on the mechanical properties of selected medium-viscosity PMMA bone cements. Materials 2022, 15: 2197.
  • 41. Wilczyński M., Bieniek M., Krakowski P., Karpiński R. Cemented vs. cementless fixation in primary knee replacement: A narrative review. Materials 2024, 17(5): 1136.
  • 42. Żebrowski R., Walczak M., Drozd K., Jarosz M.J. Changes of cytotoxicity of Ti-6Al-4V alloy made by dmls technology as effect of the shot peening. Annals of Agricultural and Environmental Medicine 2020, 27(4): 706–712.
  • 43. Gnap J., Šarkan B., Konečný V., Skrúcaný T. The Impact of road transport on the environment. Lecture Notes in Networks and Systems 2020, 124: 251–309.
  • 44. Jereb B., Stopka O., Skrúcaný T. Methodology for estimating the effect of traffic flow management on fuel consumption and CO2 production: A case study of Celje, Slovenia. Energies 2021, 14(6): en14061673.
  • 45. Smigins R. Ecological impact of CNG/gasoline bifuelled vehicles. Book Series: Engineering for Rural Development Edited by: Malinovska L., Osadcuks V. 16th International Scientific Conference: Engineering For Rural Development, Jelgava, Latvia, May 24–26, 2017, 128–133.
  • 46. Lachvajderová L., Kádárová J. Emissions in life cycle of electric vehicle. Perner’s Contacts 2020, 15,2.
  • 47. Skrucany T., Gnap J. Energy intensity and green- house gases production of the road and rail cargo transport using a software to simulate the Energy consumption of a train. Communications in Computer and Information Science 2014, 471: 263–272.
  • 48. Jurkovic M., Kalina T., Skrucany T., Gorzelanczyk P., L’uptak V. Environmental impacts of introducing LNG as alternative fuel for urban buses - case study in Slovakia. Promet-Traffic & Transportation 2020, 32(6): 837–847.
  • 49. Słowik T., Szyszlak-Barglowicz J., Zajac G., Piekarski W. Limiting the environmental impact of road infrastructure through the use of roadside vegetation. Polish Journal of Environmental Studies 2015, 24(4): 1875–1879.
  • 50. Szyszlak-Barglowicz J., Slowik T., Zajac G., Piekarski W. The content of heavy metals in the drainage ditches by communication routes. Rocznik Ochrona Srodowiska 2013, 15: 2309–2323, Part 3.
  • 51. Skrucany T., Kendra M., Stopka O., Milojevic S., Figlus T., Csiszar C. Impact of the electric mobility implementation on the greenhouse gases production in central European countries. Sustainability 2019, 11(18): 4948.
  • 52. Ciupek B., Brodzik Ł., Semkło Ł., Prokopowicz W., Sielicki P.W. Analysis of the environmental parameters of the GTM 400 turbojet engine during the co-combustion of JET A-1 jet oil with hydrogen. Journal of Ecological Engineering 2024, 25(3): 205–211.
  • 53. Eliasz J., Balitskii A., Osipowicz T., Abramek K.F. Requirements for hydrogen resistance of materials in CI engine toxic substances powered by biofuels. Procedia Structural Integrity 2019, 16: 273–280.
  • 54. Longwic R., Sander P., Jańczuk B., Zdziennicka A., Szymczyk K. Modification of canola oil physicochemical properties by hexane and ethanol with regards of its application in diesel engine. Energies 2021, 14(15): 4469.
  • 55. Rimkus A., Matijosius J., Rayapureddy S.M. Research of energy and ecological indicators of a compression ignition engine fueled with diesel, biodiesel (RME-Based) and isopropanol fuel blends. Energies 2020, 13(9): 2398.
  • 56. Kucera M., Kopcanova S., Sejkorova M. Lubricant analysis as the most useful tool in the proactive maintenance philosophies of machinery and its components. Management Systems in Production Engineering 2020, 28(3): 196–201.
  • 57. Lebedevas S., Pukalskas S., Zaglinskis J., Matijosius J. Comparative investigations into energetic and ecological parameters of camelina-based biofuel used in the 1Z diesel engine. Transport 2012, 27(2): 171–177.
  • 58. Górski K., Smigins R., Matijošius J., Rimkus A., Longwic R. Physicochemical properties of diethyl ether—sunflower oil blends and their impact on diesel engine emissions. Energies 2022, 15(11): 4133.
  • 59. Kersys A., Kalisinskas D., Pukalskas S., Vikauskas A., Kersys R., Makaras R. Investigation of the influence of hydrogen used in internal combustion engines on exhaust emission. Eksploatacja i Niezawodnosc – Main- tenance and Reliability 2013, 15(4): 384–389.
  • 60. Korsakas V., Melaika M., Pukalskas S., Stravinskas P. Hydrogen addition influence for the efficient and ecological parameters of Heavy-Duty Natural Gas SI engine. Transbaltica 2017, Transportation Science and Technology, Procedia Engineering 2017, 187: 395–401.
  • 61. Domański M., Paszkowski J., Sergey O., Zarajczyk J., Siłuch D. Analysis of energy properties of granulated plastic fuels and selected biofuels. Agricultural Engineering 2020, 24(3): 1–9.
  • 62. Szmigielski M., Zarajczyk J., Węgrzyn A., Leszczyński N., Kowalczuk J., Andrejko D., Krzysiak Z., Samociuk W., Zarajczyk K. Testing the technological line for the production of alternative fuels. Przemysł Chemiczny 2018, 97(7): 1079–1082.
  • 63. Balitskii A., Kindrachuk M., Volchenko D., Abramek K.F., Balitskii, O., Skrypnyk, V. Zhuravlev D., Bekish I., Ostashuk M., Kolesnikov V. Hydrogen containing nanofluids in the spark engine’s cylinder head cooling system. Energies 2022, 15: 59.
  • 64. Beik Y., Dziewiątkowski M., Szpica D. Exhaust emissions of an engine fuelled by petrol and liquefied petroleum gas with control algorithm adjustment. SAE International Journal of Engines 2020, 13(5): 739–759.
  • 65. Aboltins A., Berjoza D., Pirs V. Theoretical model of exploitation of automobiles operated with bioethanol-gasoline mixtures fuels. 9th International Scientific Conference: Engineering for Rural Development, Proceedings, Jelgava Latvia, May 27-28 2010. Edited by: Malinovska L., Osadcuks V. Engineering for Rural Development 2010, 133–138.
  • 66. Kriaučiūnas D., Pukalskas S., Rimkus A., Barta D. Analysis of the influence of CO2 concentration on a spark ignition engine fueled with biogas. Applied Science 2021, 11: 6379.
  • 67. Rimkus A. Pukalskas S., Mejeras G., Nagurnas S. Impact of bioethanol concentration in gasoline on SI engine sustainability. Sustainability 2024, 16: 2397.
  • 68. Matijošius J., Gutarevych Y., Shuba Y., Rimkus A., Syrota O. Effect of the addition of hydrogen-containing (H2/O2) gas on indicated and effective parameters of a gasoline engine. International Journal of Hydrogen Energy 2024, 56: 66–74.
  • 69. Kuranc A., Slowik T., Wasilewski J., Szyszlak-Barglowicz J., Stoma M., Sarkan B. Emission of particulates and chosen gaseous exhausts components during a diesel engine starting process. Farm Machinery and Processes Management in Sustainable Agriculture. Edited by: Lorencowicz, E., Uziak J., Huyghebaert B. 2017, 210–215.
  • 70. Stepanenko D., Rudnicki J., Kneba Z. Impacts of using exhaust gas recirculation and various amount of dimethyl ether premixed ratios on combustion and emissions on a dual-fuel compression ignition engine. Advances in Science and Technology Research Journal 2024, 18(2): 196–213.
  • 71. Wolff S., Seidenfus M., Brönner M., Lienkamp M. Multi-disciplinary design optimization of life cycle eco-efficiency for heavy-duty vehicles using a genetic algorithm. Journal of Clean Production 2021, 318: 128505.
  • 72. Dittrich A., Beroun S., Zvolsky T. Diesel gas dual engine with liquid LPG injection into intake manifold. Engineering for Rural Development 2018, 1978–1983.
  • 73. Szpica D. Validation of indirect methods used in the operational assessment of LPG vapor phase pulse injectors. Measurement 2018, 118: 253–261.
  • 74. Dziewiątkowski M., Szpica D. Evaluation of the conversion rate regarding hydrocarbons contained in the exhaust gases of an engine fuelled with compressed natural gas (CNG) using different catalysts operating at different temperatures. Mechanika 2021, 27: 492–497.
  • 75. Lipskis I., Pukalskas S., Droździel P., Barta D., Žuraulis V., Pečeliūnas R. Modelling and simulation of the performance and combustion characteristics of a locomotive diesel engine operating on a diesel–LNG mixture. Energies 2021, 14: 5318.
  • 76. Gelfgat Y., Smigins R. Development of technologies for natural gas and biogas utilization in transport. Latvian Journal of Physics and Technical Sciences 2013, 50(6): 26–35.
  • 77. Žvirblis T., Hunicz J., Matijošius J., Rimkus A., Kilikevičius A., Gęca M. Improving diesel engine reliability using an optimal prognostic model to predict diesel engine emissions and performance using pure diesel and hydrogenated vegetable oil. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2023, 25(4).
  • 78. Shepel O., Matijošius J., Rimkus A., Duda K., Mikulski M. Research of parameters of a compression ignition engine using various fuel mixtures of hydrotreated vegetable oil (HVO) and fatty acid esters (FAE). Energies 2021, 14(11): 3077.
  • 79. Małek A., Karowiec R., Józwik K. A review of technologies in the area of production, storage and use of hydrogen in the automotive industry. Archives of Automotive Engineering 2023, 102(4): 41–67.
  • 80. Wendeker M., Malek A., Czarnigowski J., Taccani R., Boulet P., Breaban F. Adaptive airflow control of the PEM fuel cell system. SAE Tech. Pap. 2007, 90246.
  • 81. Caponi R., Monforti Ferrario A., Bocci E., Valenti G., Della Pietra M. Thermodynamic modeling of hydrogen refueling for heavy-duty fuel cell buses and comparison with aggregated real data. International Journal of Hydrogen Energy 2021, 46: 18630–18643.
  • 82. Kasperek D., Bartnik G., Marciniak A., Małek A., Pieniak D., Gil L. The use of probabilistic networks in the analysis of risks to the components of the bus power system with hydrogen fuel cells. IOP Conference Series: Materials Science and Engineering2022, 1247: 012046.
  • 83. Fragiacomo P., Genovese M., Piraino F., Massari F., Boroomandnia M. Analysis of a distributed green hydrogen infrastructure designed to suport the sustainable mobility of a heavy-duty fleet. International Journal of Hydrogen Energy 2024, 51, Part D: 576–594.
  • 84. Eliasz J., Osipowicz T., Abramek K.F., Matuszak Z., Mozga L. Fuel pretreatment systems in modern CI engines. Catalysts 2020, 10(6): 696.
  • 85. Kukuca P., Barta D., Labuda R., Gechev T. Engine with unconventional crank mechanism FIK1. Innovative Technologies in Engineering Production (ITEP’18). Edited by: Stancekova D., Vasko M., Rudawska A., Cubonova N., Sapietova, A., Mrazik J., Szabelski J., Tlach V. MATEC Web of Conferences 2018, 244: 03004.
  • 86. Sejkorova M., Sarkan B., Verner J. Efficiency assessment of fuel borne catalyst. 18th International Scientific Conference-Logi 2017, Edited by: Stopka, O. MATEC Web of Conferences 2017, 134: 00051.
  • 87. Hunicz J., Filipek P., Kordos P., Gęca M.S., Rybak, A. Transient combustion timing management in controlled auto-ignition engine based on ion current signal. 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), Beijing, Peoples R China, Aug. 17-19.2017, IEEE 2017, 351–354.
  • 88. Hunicz J., Mikulski M., Gęca M.S., Kordos P., Komsta H. Late direct fuel injection for reduced combustion rates in a gasoline controlled auto-ignition engine. Thermal Science 2018, 22(3): 1299–1309.
  • 89. Longwic R., Nieoczym A., Kordos P. Evaluation of the combustion process in a spark-ignition engine based on the unrepeatability of the maximum pressure. IOP Conference Series, Materials Science and Engineering 2018, 421(4): 042048.
  • 90. Blatnicky M., Diżo J., Ishchuk V., Melnik R., Barta D., Misiak P. Comparison of driving stability of three-wheeled vehicles with an electric powertrain while driving in a curve. Transportation Research Procedia 2023, 74: 672–679.
  • 91. Sendek-Matysiak E., Rzedowski H., Skrucany T. Electromobility in Poland and Slovakia. Benchmarking of electric vehicles for 2019. Communications – Scientific Letters of the University of Zilina 2020, 22(4): 35–45.
  • 92. König A., Nicoletti L., Kalt S., Muller K., Koch A., Lienkamp M. An Open-Source Modular Quasi-Static Longitudinal Simulation for Full Electric Vehicles. 15th International Conference on Ecological Vehicles and Renewable Energies, EVER 2020, Monte-Carlo, 10–12 September 2020, 9242981.
  • 93. Hamza K., Laberteaux K.P., Chu K.C. On modeling the cost of ownership of plug-in vehicles. World Electric Vehicle Journal 2021, 12(1): 39.
  • 94. Prajwowski K., Gołębiewski W., Lisowski M., Abramek K.F., Galdynski D. Modeling of working machines synergy in the process of the hybrid electric vehicle acceleration. Energies 2020, 13(21): 5818.
  • 95. Nowak, R., Pietrzakowski, M. Experimental and simulation investigations of the cantilever beam Energy harvester. Solid State Phenomena 2016, 248: 249–255.
  • 96. Kęcik, K. Experimental energy recovery from a backpack using various harvester concepts. Advances in Science and Technology Research Journal 2024, 18(3): 67–78.
  • 97. Figlus T., Kozioł M., Kuczyński Ł. Impact of application of selected composite materials on the weight and vibroactivity of the upper gearbox housing. Materials 2019, 12(16): 2517.
  • 98. Wilk A., Madej H., Figlus T. Analysis of the possibility to reduce vibro activity of the gearbox housing. Eksploatacja i Niezawodnosc 2011, 50(2): 42–49.
  • 99. Figlus T., Konieczny Ł., Burdzik R., Czech P. The effect of damage to the fuel injector on changes of the vibroactivity of the diesel engine during its starting. Vibroengineering Procedia 2015, 6: 180–184.
  • 100. Jedlinski L., Caban J., Krzywonos L., Wierzbicki S., Brumercik F. Application of the vibration signal in the diagnosis of the valve clearance of an internal combustion engine. Vibroengineering Procedia 2014, 3: 14–19.
  • 101. Czech P. Diagnosing faults in the timing system of a passenger car spark ignition engine using the Bayes classifier and entropy of vibration signals. Scientific Journal of Silesian University of Technology. Series Transport 2022, 116: 83–98.
  • 102. Dąbrowski Z., Dziurdz J., Górnicka D. Utilisation of the coherence analysis in acoustic diagnostics of internal combustion engines. Archives of Acoustics 2017, 42(3): 475–481.
  • 103. Nawrocki W., Stryjski R., Kostrzewski M., Woźniak W., Jachowicz T. Application of the vibro-acoustic signal to evaluate wear in the spindle bearings of machining centres. In-service diagnostics in the automotive industry. Journal of Manufacturing Processes 2023, 92: 165–178.
  • 104. Glowacz A., Sulowicz M., Kozik J., Piech K., Glowacz W., Li Z., Brumercik F., Gutten M., Korenciak D., Kumar A., Lucas G.B., Irfan M., Caesarendra W., Liu H. Fault diagnosis of electrical faults of three-phase induction motors using acoustic analysis. Bulletin of the Polish Academy of Sciences: Technical Sciences 2024, 72(1): e148440.
  • 105. Małek A., Taccani R. Innovative approach to electric vehicle diagnostics. Archives of Automotive Engineering 2021, 92(2): 49–67.
  • 106. Więcławski K., Antkowiak M., Figlus T. Recognizing significant components of electrical waveforms of actuators operated by vehicle controllers. Sensors 2022, 22: 7945.
  • 107. Kulička J., Jílek P. The Fourier analysis in transport application using matlab. 20th International Scientific Conference on Transport Menas 2016, 5–7 October 2016, Juodkrante, Transport Means - Proceedings of the International Conference 2016, 820–825.
  • 108. Choi Y., Negash A., Kim T.Y. Waste heat recovery of diesel engine using porous medium-assisted thermoelectric generator equipped with customized thermoelectric modules. Energy Conversion and Management 2019, 197: 111902.
  • 109. Dmytrychenko M.F., Gutarevych Y.F., Trifonov D.M., Syrota O.V., Shuba E.V. On the prospects of using thermoelectric generators with the cold start system of an internal combustion engine with a thermal battery. Journal of Thermoelectricity 2018, 4: 49–54.
  • 110. Du Q., Diao H., Niu Z., Zhang G., Shu G., Jiao K. Effect of cooling design on the characteristics and performance of thermoelectric generator used for internal combustion engine. Energy Conversion and Management 2015, 101: 9–18.
  • 111. Gutarevych Y., Matijošius J., Trifonov D., Syrota O., Rimkus A., Shuba Y., Radvilaitė U. Improving the Energy Efficiency of a Vehicle by Implementing an Integrated System for Utilizing the Thermal Energy of the Exhaust Gases of an Internal Combustion Engine. Lecture Notes in Intelligent Transportation and Infrastructure 2023, Part F1379: 144–151.
  • 112. Kim T.Y., Negash A.A., Cho G. Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Conversion and Management 2016, 124: 280–286.
  • 113. Vale S., Heber L., Coelho P.J., Silva C.M. Parametric study of a thermoelectric generator system for exhaust gas energy recovery in diesel road freight transportation. Energy Conversion and Management 2017, 133: 167–177.
  • 114. Zhao D. Waste thermal energy harvesting from a convection-driven thermo-acoustic-piezo system. Energy Conversion and Management 2013, 66: 87–97.
  • 115. Itani K., De Bernardinis A., Khatir Z., Jammal A. Comparative analysis of two hybrid energy storage systems used in a two front wheel driven electric vehicle during extreme start-up and regenerative braking operations. Energy Conversion and Management 2017, 144: 69–87.
  • 116. Labuda R., Barta D., Kovalcik A. Effective use of the braking effect of vehicle drivetrain at deceleration. 41st International Scientific Conference of Czech and Slovak University Departments and Institutions Dealing with the Research of Internal Combustion Engines (KOKA 2010) 2010, 206–211.
  • 117. Abdelkareem M.A.A., Xu L., Ali M.K.A., Elagouz A., Mi J., Guo S., Liu Y., Zuo L. Vibration energy harvesting in automotive suspension system: A detailed review. Applied Energy 2018, 229: 672–699.
  • 118. Faraj R., Graczykowski C., Hinc K., Holnicki-Szulc J., Knap L., Senko J. Adaptable pneumatic shock-absorber. In Proceedings of the 8th Conference on Smart Structures and Materials, SMART 2017 and 6th International Conference on Smart Materials and Nanotechnology in Engineering, SMN 2017, Madrid, Spain, 5–8 June 2017, 86–93.
  • 119. Genovese A., Strano S., Terzo M. Design and multi-physics optimization of an energy harvesting system integrated in a pneumatic suspension. Mechatronics 2020; 69: 102395.
  • 120. Li S., Xu J., Pu X., Tao T., Mei X. A novel design of a damping failure free energy-harvesting shock absorber system. Mechanical Systems and Signal Processing 2019, 132: 640–653.
  • 121. Wei C., Jing X. A comprehensive review on vibration energy harvesting: Modelling and re alization. Renewable and Sustainable Energy Reviews 2017, 74: 1–18.
  • 122. Zhang Y., Guo K., Wang D., Chen C., Li X. Energy conversion mechanism and regenerative potential of vehicle suspensions. Energy 2017, 119: 961–970.
  • 123. Ruchała P., Orynycz O., Stryczniewicz W., Tucki K. Possibility of Energy Recovery from Airflow around an SUV-Class Car Based on Wind Tunnel Testing. Energies 2023, 16: 6965.
  • 124. Caban J. Technologies of using energy harvesting systems in motor vehicles – energy from exhaust system. Engineering for Rural Development, Jelgava, 26.–28.05.2021. 2021, 98–105.
  • 125. Imiołczyk B., Margielewicz J., Gąska D., Litak G., Yurchenko D., Rogal M., Lipski T., Kijak E. Identification and analysis of a nonlinear mathematical model of the temporomandibular joint disc. Chaos, Solitons and Fractals 2024, 181: 114642.
  • 126. Sadasivan S., Litak G., Gęca M.J. Numerical analysis of flow-induced transverse vibration of a cylinder with cubic non-linear stiffness at high reynolds numbers. Energies 2024, 17(7): 1776.
  • 127. Li Z., Zhang H., Litak G., Zhou S. Periodic solutions and frequency lock-in of vortex-induced vibration energy harvesters with nonlinear stiffness. Journal of Sound and Vibration 2024, 568: 117952.
  • 128. Vijayan K., Friswell M.I., Khodaparast H.H., Adhikari S. Non-linear energy harvesting from coupled impacting beams. International Journal of Mechanical Sciences 2015, 96-97: 101–109.
  • 129. Borowiec M., Litak G., Lenci S. Noise effected energy harvesting in a beam with stopper. International Journal of Structural Stability and Dynamics 2014, 14: 1440020.
  • 130. Ma, X., Zhou, S. Analysis of tristable wind-induced vibration energy harvesting system. Journal of Dynamics and Control 2023, 21(10): 54–60.
  • 131. Zhao L., Yang Y. An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Applied Energy 2018, 212: 233–243.
  • 132. Jung H.J., Song Y., Hong S.K., Yang C.H., Hwang S.J., Jeong S.Y., Sung T.H. Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network. Sensors and Actuators 2015, A222: 314–321.
  • 133. Erturk A., Hoffmann J., Inman D.J. A piezomagnetoelastic structure for broadband vibration Energy harvesting. Applied Physics Letters 2009, 94: 254102.
  • 134. Giri A.M., Ali S.F., Arockiarajan A. Characterizing harmonic and subharmonic solutions of the bi-stable piezoelectric harvester with a modified Harmonic Balance approach. Mechanical Systems and Signal Processing 2023, 198: 110437.
  • 135. Huang D., Zhou S., Litak G. Theoretical analysis of multi-stable energy harvesters with high order stiffness terms. Communications in Non linear Science and Numerical Simulation 2019, 69: 270–286.
  • 136. Huguet T., Lallart M., Badel A. Orbit jump in bistable energy harvesters through buckling lev- el modification. Mechanical Systems and Signal Processing 2019, 128: 202–215.
  • 137. Giri A.M., Ali S.F., Arockiarajan A. Piezoelectric unimorph and bimorph cantilever configurations: Design guidelines and strain assessment. Smart Materials and Structures 2022, 31(3): 035003
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0944d917-6862-4516-9687-07b81f170385
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.