Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, iss. 9 | 54--67
Tytuł artykułu

Monitoring Agricultural Drought in Savanna Ecosystems Using the Vegetation Health Index – Implications of Climate Change

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to monitor the implications of climate change on savanna ecosystem drought using time series data from the Landsat 8 sensor, spanning from 2013 to 2022. We employed a remote sensing computational approach with the semi-automatic classification plugin (SCP) in the open-source QGIS software. Specifically, we utilized channels from the operational land imager (OLI), including Band 4 Red (0.636–0.673 µm) and Band 5 Near-Infrared (0.851–0.879 µm), as well as Thermal Infrared Sensor (TIRS) channels Band 10 TIRS-1 (10.60–11.19 µm) and Band 11 TIRS-2 (11.50–12.51 µm). These channels were used to calculate the vegetation health index (VHI) using the raster calculator, followed by data reclassification with specific thresholds to compare drought-affected areas. Our findings reveal a significant impact of climate change on savanna ecosystem drought over the decade, with the most extreme conditions observed in 2015 and 2019, where drought coverage reached 42.74% and 26.58%, respectively. Other years exhibited relatively low drought dynamics, affecting less than 3% of the area. This period aligns with the el niño-southern oscillation (ENSO) phenomenon, particularly the transition from El Niño to La Niña, known to cause global weather variations, and significantly influenced by the positive phase of the Indian Ocean dipole (IOD). The novelty of this research lies in two main aspects: firstly, the use of Landsat satellite sensors for this specific region has not been extensively studied before; secondly, the discovered impacts of drought in relation to global climate change phenomena are particularly noteworthy. A limitation of this study is the relatively short investigation period of just one decade, which does not fully capture the long-term impacts of climate change. Future research is recommended to utilize imagery with higher temporal resolution over extended periods to better represent extreme climate events and derive drought patterns over durations exceeding one decade.
Wydawca

Rocznik
Strony
54--67
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Soil Sciences and Environment Faculty of Agriculture Udayana University, Pb Sudirman Street, Denpasar, Indonesia, dharmasusila@unud.ac.id
  • Soil Sciences and Environment Faculty of Agriculture Udayana University, Pb Sudirman Street, Denpasar, Indonesia, trigunasih@unud.ac.id
  • Spatial Data Infrastructure Development Center (PPIDS) Udayana University, Pb Sudirman Street, Denpasar, Indonesia, m.saifulloh@unud.ac.id
Bibliografia
  • 1. Adnyana, I.W.S., As-syakur, A.R., Suyarto, R., Sunarta, I.N., Nuarsa, I.W., Diara, I.W., Saifulloh, M., Wiyanti. 2024. Geospatial Technology for Climate Change: Influence of ENSO and IOD on Soil Erosion. In Technological Approaches for Climate Smart Agriculture, p. 249–275 Springer.
  • 2. Arfaansyah, T., Putut, I., Dimyati, M. 2021. Agricultural drought identification based on Soil Moisture Index (SMI) during 2019 Indian Ocean dipole (IOD) in Bekasi Regency. https://doi.org/10.1117/12.2623397
  • 3. Barsi, J.A., Schott, J.R., Hook, S.J., Raqueno, N.G., Markham, B.L., Radocinski, R.G. 2014. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11). https://doi.org/10.3390/rs61111607
  • 4. Bergstrom, B.J., Scruggs, S.B., Vieira, E.M. 2023. Tropical savanna small mammals respond to loss of cover following disturbance: A global review of field studies. In Frontiers in Ecology and Evolution (Vol. 11). https://doi.org/10.3389/fevo.2023.1017361
  • 5. Bhayunagiri, I.B.P., Saifulloh, M. 2022. Mapping of Subak Area Boundaries and Soil Fertility for Agricultural Land Conservation. Geographia Technica, 17(2). https://doi.org/10.21163/GT_2022.172.17
  • 6. Diara, I.W., Suyarto, R., Saifulloh, M. 2022. Spatial distribution of landslide susceptibility in new road construction Mengwitani-Singaraja, Bali-Indonesia: based on geospatial data. International Journal of GEOMATE, 23(96). https://doi.org/10.21660/2022.96.3320
  • 7. Diara, I.W., Wahyu Wiradharma, I.K.A., Suyarto, R., Wiyanti, W., Saifulloh, M. 2023. Spatio-temporal of landslide potential in upstream areas, Bali tourism destinations: remote sensing and geographic information approach. Journal of Degraded and Mining Lands Management, 10(4). https://doi.org/10.15243/jdmlm.2023.104.4769
  • 8. Dzakiyah, I.F., Saraswati, R., Pamungkas, F.D. 2022. The Potential of Agricultural Land Drought Using Normalized Difference Drought Index in Ciampel Subdistrict Karawang Regency. International Journal on Advanced Science, Engineering and Information Technology, 12(3). https://doi.org/10.18517/ijaseit.12.3.13261
  • 9. Ejaz, N., Bahrawi, J., Alghamdi, K.M., Rahman, K.U., Shang, S. 2023. Drought Monitoring Using Landsat Derived Indices and Google Earth Engine Platform: A Case Study from Al-Lith Watershed, Kingdom of Saudi Arabia. Remote Sensing, 15(4). https://doi.org/10.3390/rs15040984
  • 10. Gang, C., Wang, Z., Chen, Y., Yang, Y., Li, J., Cheng, J., Qi, J., Odeh, I. 2016. Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011. Ecological Indicators, 67. https://doi.org/10.1016/j.ecolind.2016.03.049
  • 11. Guha, S., Govil, H., Dey, A., Gill, N. 2018. Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. European Journal of Remote Sensing, 51(1). https://doi.org/10.1080/22797254.2018.1474494
  • 12. Hazaymeh, K., Hassan, Q.K. 2017. A remote sensing-based agricultural drought indicator and its implementation over a semi-arid region, Jordan. Journal of Arid Land, 9(3). https://doi.org/10.1007/s40333-017-0014-6
  • 13. Hemati, M., Hasanlou, M., Mahdianpari, M., Mohammadimanesh, F. 2021. A systematic review of landsat data for change detection applications: 50 years of monitoring the earth. In Remote Sensing 13(15). https://doi.org/10.3390/rs13152869
  • 14. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P. G., Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15). https://doi.org/10.1002/joc.1276
  • 15. Huang, S., Tang, L., Hupy, J.P., Wang, Y., Shao, G. 2021. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. In Journal of Forestry Research 32(1). https://doi.org/10.1007/s11676-020-01155-1
  • 16. Irfan, M., Iskandar, I. 2022. The impact of positive iod and la niña on the dynamics of hydroclimatological parameters on peatland. International Journal of Geomate, 23(97). https://doi.org/10.21660/2022.97.3307
  • 17. Irob, K., Blaum, N., Weiss-Aparicio, A., Hauptfleisch, M., Hering, R., Uiseb, K., Tietjen, B. 2023. Savanna resilience to droughts increases with the proportion of browsing wild herbivores and plant functional diversity. Journal of Applied Ecology, 60(2). https://doi.org/10.1111/1365-2664.14351
  • 18. Jiménez-Muñoz, J.C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J.A., Schrier, G. Van Der. 2016. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016. Scientific Reports 6. https://doi.org/10.1038/srep33130
  • 19. Jobbágy, E.G., Jackson, R.B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2). https://doi.org/10.1890/1051-0761(2000)010[0423:TVDO SO]2.0.CO;2
  • 20. Kartini, N.L., Saifulloh, M., Trigunasih, N.M., Narka, I.W. 2023. Assessment of soil degradation based on soil properties and spatial analysis in dryland farming. Journal of Ecological Engineering, 24(4). https://doi.org/10.12911/22998993/161080
  • 21. Ke, Y., Im, J., Lee, J., Gong, H., Ryu, Y. 2015. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sensing of Environment, 164. https://doi.org/10.1016/j.rse.2015.04.004
  • 22. Kogan, F.N. 2001. Operational space technology for global vegetation assessment. Bulletin of the American Meteorological Society, 82(9). https://doi.org/10.1175/1520-0477(2001)0822.3.CO;2
  • 23. Li, Z.L., Tang, B.H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F., Sobrino, J.A. 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131. https://doi.org/10.1016/j.rse.2012.12.008
  • 24. Lorenzo, E., Mantua, N. 2016. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Climate Change, 6(11). https://doi.org/10.1038/nclimate3082
  • 25. Masek, J.G., Wulder, M.A., Markham, B., McCorkel, J., Crawford, C.J., Storey, J., Jenstrom, D.T. 2020. Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment, 248. https://doi.org/10.1016/j.rse.2020.111968
  • 26. Mbatha, N., Xulu, S. 2018. Time series analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of recent intense drought. Climate, 6(4). https://doi.org/10.3390/cli6040095
  • 27. Morales-Rincon, L.A., Hernandez, A.J., Rodriguez-Hernandez, N.S., Jimenez, R. 2021. Carbon Exchange and Accumulation in an Orinoco High Plains Native Savanna Ecosystem as Measured by Eddy Covariance. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.673932
  • 28. Nippert, J.B., and Holdo, R.M. 2015. Challenging the maximum rooting depth paradigm in grasslands and savannas. Functional Ecology, 29(6). https://doi.org/10.1111/1365-2435.12390
  • 29. Nugraha, A.S.A., Gunawan, T., Kamal, M. 2019. Comparison of Land Surface Temperature Derived from Landsat 7 ETM+ and Landsat 8 OLI/TIRS for Drought Monitoring. IOP Conference Series: Earth and Environmental Science, 313(1). https://doi.org/10.1088/1755-1315/313/1/012041
  • 30. Oliveira de Morais, T.M., Berenguer, E., Barlow, J., França, F., Lennox, G.D., Malhi, Y., Chesini Rossi, L., Maria Moraes de Seixas, M., Ferreira, J. 2021. Leaf-litter production in human-modified Amazonian forests following the El Niño-mediated drought and fires of 2015–2016. Forest Ecology and Management, 496. https://doi.org/10.1016/j.foreco.2021.119441
  • 31. Pettorelli, N., Ryan, S., Mueller, T., Bunnefeld, N., Jedrzejewska, B., Lima, M., Kausrud, K. 2011. The normalized difference vegetation index (NDVI): Unforeseen successes in animal ecology. In Climate Research, 46(1). https://doi.org/10.3354/cr00936
  • 32. Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.M., Tucker, C.J., Stenseth, N.C. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. In Trends in Ecology and Evolution, 20(9). https://doi.org/10.1016/j.tree.2005.05.011
  • 33. Räsänen, M., Aurela, M., Vakkari, V., Beukes, J.P., Tuovinen, J.P., Van Zyl, P.G., Josipovic, M., Venter, A.D., Jaars, K., Siebert, S.J., Laurila, T., Rinne, J., Laakso, L. 2017. Carbon balance of a grazed savanna grassland ecosystem in South Africa. Biogeosciences, 14(5). https://doi.org/10.5194/bg-14-1039-2017
  • 34. Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., Kaplan, A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(14). https://doi.org/10.1029/2002jd002670
  • 35. Ridwan, M.A., Radzi, N.A.M., Ahmad, W.S.H.M.W., Mustafa, I.S., Din, N.M., Jalil, Y.E., Isa, A.M., Othman, N.S., Zaki, W.M.D.W. 2018. Applications of landsat-8 data: A Survey. International Journal of Engineering and Technology(UAE), 7(4). https://doi.org/10.14419/ijet.v7i4.35.22858
  • 36. Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite (ERTS) Symposium, 1.
  • 37. Roy, D.P., Wulder, M.A., Loveland, T.R.C.E.W., Allen, R.G., Anderson, M.C., Helder, D., Irons, J.R., Johnson, D.M., Kennedy, R., Scambos, T.A., Schaaf, C.B., Schott, J.R., Sheng, Y., Vermote, E.F., Belward, A.S., Bindschadler, R., Cohen, W.B., Gao, F., Zhu, Z. 2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145. https://doi.org/10.1016/j.rse.2014.02.001
  • 38. Sankaran, M. 2019. Droughts and the ecological future of tropical savanna vegetation. In Journal of Ecology, 107(4). https://doi.org/10.1111/1365-2745.13195
  • 39. Sari, Y.A., Sriartha, I.P., Adi Nugraha, A.S. 2021. Mapping The drought area through Landsat 8 OLI/TIRS With LST Model SWA-S Method in Banyuwangi Regency. https://doi.org/10.4108/eai.9-9-2021.2314836
  • 40. Sekertekin, A., Bonafoni, S. 2020. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing, 12(2). https://doi.org/10.3390/rs12020294
  • 41. Staver, A.C., Wigley-Coetsee, C., Botha, J. 2019. Grazer movements exacerbate grass declines during drought in an African savanna. Journal of Ecology, 107(3). https://doi.org/10.1111/1365-2745.13106
  • 42. Sunarta, I.N., Saifulloh, M. 2022a. Coastal Tourism: Impact for Built-Up Area Growth and Correlation to Vegetation and Water Indices Derived From Sentinel-2 Remote Sensing Imagery. Geojournal of Tourism and Geosites, 41(2). https://doi.org/10.30892/gtg.41223-857
  • 43. Sunarta, I.N., Saifulloh, M. 2022b. Spatial variation of NO2 levels during the covid-19 pandemic in the Bali Tourism Area. Geographia Technica, 17(1). https://doi.org/10.21163/GT_2022.171.11
  • 44. Sunarta, I.N., Suyarto, R., Saifulloh, M., Wiyanti, W., Susila, K.D., Kusumadewi, L.G.L. 2022. Surface urban heat island (SUHI) phenomenon in Bali and Lombok tourism areas based on remote sensing. Journal of Southwest Jiaotong University, 57(4). https://doi.org/10.35741/issn.0258-2724.57.4.44
  • 45. Suyarto, R., Wiyanti, Saifulloh, M., Fatahillah, A.W., Diara, I.W., Susila, K.D., Kusmiyarti, T. B. 2023. Hydrological approach for flood overflow estimation in Buleleng Watershed, Bali. International Journal of Safety and Security Engineering, 13(5). https://doi.org/10.18280/ijsse.130512
  • 46. Trigunasih, N.M., Narka, I.W., Saifulloh, M. 2023a. Mapping eruption affected area using Sentinel-2A imagery and machine learning techniques. Journal of Degraded and Mining Lands Management, 11(1). https://doi.org/10.15243/jdmlm.2023.111.5073
  • 47. Trigunasih, N.M., Narka, I.W., Saifulloh, M. 2023b. Measurement of soil chemical properties for mapping soil fertility status. International Journal of Design and Nature and Ecodynamics, 18(6). https://doi.org/10.18280/ijdne.180611
  • 48. Trigunasih, N.M., Saifulloh, M. 2023. Investigation of Soil Erosion in Agro-Tourism Area: Guideline for Environmental Conservation Planning. Geographia Technica, 18(1). https://doi.org/10.21163/GT_2023.181.02
  • 49. Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2). https://doi.org/10.1016/0034-4257(79)90013-0
  • 50. Wilcox, K.R., Koerner, S.E., Hoover, D.L., Borkenhagen, A.K., Burkepile, D.E., Collins, S.L., Hoffman, A.M., Kirkman, K.P., Knapp, A.K., Strydom, T., Thompson, D.I., Smith, M.D. 2020. Rapid recovery of ecosystem function following extreme drought in a south African savanna grassland. Ecology, 101(4). https://doi.org/10.1002/ecy.2983
  • 51. Wolteji, B.N., Bedhadha, S.T., Gebre, S.L., Alemayehu, E., Gemeda, D.O. 2022. Multiple Indices Based Agricultural Drought Assessment in the Rift Valley Region of Ethiopia. Environmental Challenges, 7. https://doi.org/10.1016/j.envc.2022.100488
  • 52. Wulder, M.A., Loveland, T.R., Roy, D.P., Crawford, C.J., Masek, J.G., Woodcock, C.E., Allen, R.G., Anderson, M.C., Belward, A.S., Cohen, W.B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J.D., Hostert, P., Hughes, M.J., Zhu, Z. 2019. Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225. https://doi.org/10.1016/j.rse.2019.02.015
  • 53. Xu, H.Q. 2015. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat 8 satellite. Acta Geophysica Sinica, 58(3). https://doi.org/10.6038/cjg20150304
  • 54. Zhang, M., Yuan, X. 2020. Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations. Hydrology and Earth System Sciences, 24(11). https://doi.org/10.5194/hess-24-5579-2020
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0913462a-7375-4861-875d-e1f27523e73c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.