Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 72, no 1 | 7--16
Tytuł artykułu

A tiling property for actions of amenable groups along Tempelman Følner sequences

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show that a certain tiling property (which directly implies the pointwise ergodic theorem) holds for pmp actions of amenable groups along increasing Tempelman Følner sequences, thus providing a short and combinatorial proof of the corresponding pointwise ergodic theorem.
Wydawca

Rocznik
Strony
7--16
Opis fizyczny
Bibliogr. 10 poz.,
Twórcy
  • Department of Mathematics, University of Maryland, College Park, MD, USA, zomback@umd.edu
Bibliografia
  • [1] [Bir31] G. D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 17 (1931), 656–660.
  • [2] [Eme74] W. R. Emerson, The Pointwise Ergodic Theorem for amenable groups, Amer. J. Math. 96 (1974), 472–487.
  • [3] [Hoc07] M. Hochman, Averaging sequences and abelian rank in amenable groups, Israel J. Math. 158 (2007), 119–128.
  • [4] [KP06] M. Keane and K. Petersen, Easy and nearly simultaneous proofs of the Ergodic Theorem and Maximal Ergodic Theorem, in: Dynamics and Stochastics,
  • [5] IMS Lecture Notes Monogr. Ser. 48, Inst. Math. Statist., Beachwood, OH, 2006, 248–251.
  • [6] [Lin01] E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2001), 259–295.
  • [7] [OW83] D. Ornstein and B. Weiss, The Shannon–McMillan–Breiman theorem for a class of amenable groups, Israel J. Math. 44 (1983), 53–60.
  • [8] [Tem67] A. A. Tempel’man, Ergodic theorems for general dynamical systems, Soviet Math. Dokl. 8 (1967), 1213–1216.
  • [9] [Tse18] A. Tserunyan, A descriptive set theorist’s proof of the pointwise ergodic theorem, arXiv:1805.07365 (2018).
  • [10] [Wei03] B. Weiss, Actions of amenable groups, in: Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Ser. 310, Cambridge Univ. Press, Cambridge, 2003, 226–262.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0904e19b-6f82-4a2c-9864-59cc9460620a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.