Czasopismo
2016
|
R. 92, nr 8
|
10--13
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Optimization of the drilling holes process in the electronic printed circuit boards using particle swarm optimization algorithm
Języki publikacji
Abstrakty
W niniejszej pracy przedstawiono optymalizację procesu wiercenia otworów w elektronicznych płytach drukowanych. Do realizacji tego zadania zastosowano algorytm optymalizacji rojem cząstek w wersji dostosowanej do optymalizacji problemów kombinatorycznych. Opracowany algorytm przetestowano przy użyciu ogólnie dostępnych danych benchmarkowych z biblioteki VLSI Data Set. Biblioteka ta zawiera dane odnośnie przykładowych elektronicznych płyt drukowanych. Otrzymane wyniki porównano z wynikami otrzymanymi przy użyciu standardowego algorytmu rojowego przystosowanego do optymalizacji problemów o dyskretnych dziedzinach. Trasa ramienia wiercącego uzyskana przy użyciu proponowanego algorytmu jest krótsza od trasy uzyskanej standardowym algorytmem roju dla dziedzin dyskretnych.
In this paper, the optimization of the drilling holes process in the electronic printed circuit boards is presented. The particle swarm optimization algorithm in the version dedicated to the optimization of the combinatorial problems is applied for this task realization. The algorithm elaborated in this paper was tested with the use of global accessible benchmark data sets with the VLSI Data Set library. This library contains the data of the exemplary electronic printed boards. The results obtained using proposed algorithm were compared with the results obtained using standard particle swarm optimization algorithm in the version dedicated for optimization of the problems with discrete domains. The route of drilling arm obtained using proposed algorithm was shorter than the route of drilling arm obtained using standard particle swarm optimization algorithm for discrete domains.
Czasopismo
Rocznik
Tom
Strony
10--13
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Politechnika Koszalińska, Wydział Elektroniki i Informatyki, Katedra Inżynierii Komputerowej, ul. Śniadeckich 2, 75-453 Koszalin, aslowik@ie.tu.koszalin.pl
autor
- Politechnika Koszalińska, Wydział Elektroniki i Informatyki, Katedra Inżynierii Komputerowej, ul. Śniadeckich 2, 75-453 Koszalin
Bibliografia
- [1] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1992)
- [2] Goldberg D.E., Genetic algorithms in search, optimization, and machine learning, Addison-Wesley Publishing Company Inc., New York (1989)
- [3] Socha, K., Doringo, M., Ant colony optimization for continous domains, European Journal of Operational Research, 185 (2008), n.3, 1155-1173
- [4] Dorigo M., Stutzle T., Ant Colony Optimization, The MIT Press,(2004)
- [5] Kennedy J., Eberhart R.C., Shi Y., Swarm intelligence, San Francisco, Morgan Kaufmann Publishers, 2001
- [6] Price K., An Introduction to Differential Evolution, In Corne D., Dorigo M., Glover F., (eds.), New Ideas in Optimization, McGraw-Hill, London, UK, (1999) 79-108
- [7] Price K.V., Storn R.M., Lampinen J.A., Differential Evolution: A Practical Approach to Global Optimization, Springer 2005
- [8] Kolahan F., Liang M., Tabu search approach to optimization of drilling operations, Computers and Industrial Engineering, 31 (1996), n.1-2, 371-374
- [9] Kolahan F., Liang M. Optimization of hole-making operations: a tabu search approach, International Journal of Machine Tools and Manufacture, 2 (2000), n.40, 1735-1753
- [10] Onwubolu G.C., Clerc M., Optimal path for automated drilling operations by a new heuristic approach using particle swarm optimization, International Journal of Production Research, 3 (2004), n.42, 473-491
- [11] Sigl S., Mayer H.A. Hybrid evolutionary approaches to CNC drill route optimization, Proceedings of Computational Intelligence for Modeling, Control and Automation, (2005) 905-910
- [12] Qudeiri J.A., Yamamoto H., Ramli R. Optimization of operation sequence in CNC machine tools using genetic algorithm, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 1 (2007), n.2, 272-282
- [13] Ghaiebi H., Solimanpur M. An ant algorithm for optimization of hole-making operations, Computers and Industrial Engineering, 2 (2007), n.52, 308-319
- [14] Zhu G.Y., Drilling path optimization based on swarm intelligent algorithm, Proceedings of IEEE International Conference on Robotics and Biomimetics, (2006), 193-196
- [15] Zhu G.Y., Zhang W.B. Drilling path optimization by the particle swarm optimization algorithm with global convergence characteristics, International Journal of Production Research, 46 (2008), n.8, 2299-2311
- [16] Zhong Wen-Liang, Guangzhou Zhang Jun, Chen Wei-Neng N., A novel discrete particle swarm optimization to solve traveling salesman problem, IEEE Congres on Evolutionary Computation 2007, (2007), 3283-3287
- [17] Clerc M., Discrete Particle Swarm Optimization Illustrated by the Travelling Salesman Problem, Technical Report, 29 (2000)
- [18] Słowik A., Zastosowanie algorytmu ewolucyjnego do minimalizacji poboru mocy podczas testowania układów cyfrowych, Przegląd Elektrotechniczny, (2009), n.11, 153-155
- [19] Słowik A., Hybrydowa metoda ewolucyjnej optymalizacji kombinacyjnych układów cyfrowych, Przegląd Elektrotechniczny, (2009), n.11, 156-159
- [20] Słowik A., Application of Evolutionary Algorithm to Design of Minimal Phase Digital Filters with Non-Standard Amplitude Characteristics and Finite Bits Word Length, Bulletin of The Polish Academy of Science - Technical Science, 59 (2011), n.2, 125-135
- [21] Słowik A., Białko M., Partitioning of VLSI Circuits on Subcircuits with Minimal Number of Connections Using Evolutionary Algorithm”, 8th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2006, Lecture Notes in Artificial Intelligence, 4029 (2006), 470-478
- [22] Słowik A., Białko M., Evolutionary Design of Combinational Digital Circuits: State of the Art, Main Problems, and Future Trends, First International Conference on Information Technology, IT 2008, Gdansk, May 18-21, 2008, 209-212
- [23] Segura C., Coello Coello C.A., Segredo E., Leon C., An Analysis of the Automatic Adaptation of the Crossover Rate in Differential Evolution, in 2014 IEEE Congress on Evolutionary Computation (CEC'2014), pp. 459-466, IEEE Press, Beijing, China, 6-11 July 2014, ISBN 978-1-4799-1488-3
- [24] Cagnina L.C., Esquivel S.C., Coello Coello C.A., A Fast Particle Swarm Algorithm For Solving Smooth and Non-smooth Economic Dispatch Problems, Engineering Optimization, 43 (2011), n.5, 485-505
- [25] Słowik A., Steering of Balance Between Exploration and Exploitation Properties of Evolutionary Algorithms - Mix Selection, 10th International Conference on Artificial Intelligence and Soft Computing, June 13-17, 2010, Zakopane, Poland, Lecture Notes in Artificial Intelligence, L. Rutkowski et al. (Eds.): ICAISC 2010, Part II, LNAI 6114, 213-220
- [26] Segura C., Coello Coello C.A., Segredo E., León C., On the Adaptation of the Mutation Scale Factor in Differential Evolution, Optimization Letters, 9 (2015), n.1, 189-198
- [27] http://www.math.uwaterloo.ca/tsp/vlsi/xqf131.points.html
- [28] http://www.math.uwaterloo.ca/tsp/vlsi/xqf131.tour.html
- [29] http://www.math.uwaterloo.ca/tsp/vlsi/
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na
działalność upowszechniającą naukę.
działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-08ac5de2-c814-41d2-865c-fe4cd7c92735