Czasopismo
2024
|
Vol. 20, no. 1
|
49--61
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Objective: Maxillofacial injuries often necessitate complex reconstructive surgeries, requiring the design and fabrication of patient-specific implants (PSIs) to restore functionality and aesthetics. A 32-year-old male patient, who sustained a mandible injury, served as a case study. Methods: This study presents advancements in maxillofacial reconstruction through the application of Electron Beam Powder Bed Fusion (PBF-EB/M), an additive manufacturing (AM) technique, in the creation of personalized jaw implants. CT scans were processed to develop a 3-D model of the patient's tissues, and Finite Element Analysis (FEA) was employed to assess mechanical behaviour. Results: The PSI, manufactured from a Ti6Al4V ELI alloy, exhibited suitable mechanical properties and biocompatibility. This work presents a workflow that clarifies the principles of designing, verifying and manufacturing PSIs for maxillofacial reconstruction. Conclusions: By integrating advanced imaging techniques, FEA simulations, and AM technologies, along with post-processing using CAM tools, the feasibility of producing personalized medical devices with modern manufacturing methods that offer enhanced design flexibility can be assessed. This includes highlighting both the potential benefits and challenges of the proposed approach.
Czasopismo
Rocznik
Tom
Strony
49--61
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
- Department of Laser Technologies, Automation and Production Organization, Faculty of Mechanical Engineering, Wrocław University of Science and Technology; Ignacego Łukasiewicza Str. 5, 50-371 Wroclaw, Poland, patrycja.e.szymczyk@pwr.edu.pl
autor
- Department of Laser Technologies, Automation and Production Organization, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
autor
- Department of Laser Technologies, Automation and Production Organization, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
autor
- Department of Laser Technologies, Automation and Production Organization, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
autor
- student, Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
autor
- Department of Laser Technologies, Automation and Production Organization, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
autor
- Clinical Department of Maxillofacial Surgery, Faculty of Medicine and Dentistry, Wrocław Medical University, Wrocław, Poland
Bibliografia
- 1. Moiduddin K, Mian SH, Elseufy SM, Abdo BMA, Aboudaif MK, Alkhalefah H. Craniofacial reconstruction with personalized lightweight scaffold fabricated using electron-beam additive manufacturing. Metals (Basel). 2022;12(4):552. doi: https://doi.org/10.3390/met12040552.
- 2. Yang WF, Choi WS, Wong MCM, Powcharoen W, Zhu W-Y, Tsoi JKH, et al. Three-dimensionally printed patient-specific surgical plates increase accuracy of oncologic head and neck reconstruction versus conventional surgical plates: A comparative study. Ann Surg Oncol. 2021;28(1):363-75. doi: https://doi.org/10.1245/s10434-020-08732-y.
- 3. U V, Mehrotra D, Howlader D, Singh PK, Gupta S. Patient specific three- -dimensional implant for reconstruction of complex mandibular defect. J Craniofac Surg. 2019;30(4):e308-11. doi: https://doi.org/10.1097/SCS.0000000000005228.
- 4. Malyala SK, Yennam RK, Alwala AM. A 3D-printed osseointegrated combined jaw and dental implant prosthesis - a case study. Rapid Prototyp J. 2017;23(6):1164-9. doi: https://doi.org/10.1108/RPJ-10-2016-0166.
- 5. Pilliar RM. Modern metal processing for improved load-bearing surgical implants. Biomaterials. 1991;12(2):95-100.
- 6. Niinomi M. Recent research and development in metallic materials for biomedical, dental and healthcare products applications. MSF [Internet]. 2007 Mar 15 [cited 2024 Apr 3];539-43:193–200. Available from: https://www.scientific.net/MSF.539-543.193.
- 7. Gegner J. Tribology Fundamentals and advancements [Internet]. Rijeka: IntechOpen; 2016 [cited 2024 Apr 3]. Available from: https://books. google.com/books/about/Tribology.html?hl=pl&id=VGOfDwAAQBAJ.
- 8. Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg. 2014;4(1):9. doi: https://doi.org/10.4103/2231-0746.133065.
- 9. Weng X, Yang H, Xu J, Li X, Liao Q, Wang J. In vivo testing of porous Ti-25Nb alloy serving as a femoral stem prosthesis in a rabbit model. Exp Ther Med. 2024;12(3):1323-30.
- 10. Moiduddin K, Mian SH, Alkindi M, Ramalingam S, Alkhalefah H, Alghamdi O. An in vivo evaluation of biocompatibility and implant accuracy of the electron beam melting and commercial reconstruction plates. Metals. 2019;9(10):1065.
- 11. Yang Y, Wang G, Liang H, Gao C, Peng S, Shen L, et al. Additive manufacturing of bone scaffolds. Int. J. Bioprinting. 2018;5(1):148.
- 12. Liang H, Ji T, Zhang Y, Wang Y, Guo W. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour. Bone Joint J. 2017;99-B(2):267-75.
- 13. Phan K, Sgro A, Maharaj MM, D’Urso P, Mobbs RJ. Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis. J Spine Surg. 2016;2(4):314-8.
- 14. Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan K.: The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: Case report. J Neurosurg Spine. 2017;26(4):513-8.
- 15. Spetzger U, Frasca M, König SA. Surgical planning, manufacturing and implantation of an individualized cervical fusion titanium cage using patient-specific data. Eur Spine J. 2016;25(7):2239-46.
- 16. Wei R, Guo W, Ji T, Zhang Y, Liang H. One-step reconstruction with a 3D-printed, custom-made prosthesis after total en bloc sacrectomy: A technical note. Eur Spine J. 2017;26(7):1902-9.
- 17. Kim D, Lim JY, Shim KW, Han JW, Yi S, Yoon DH, et al. Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-Year Follow-Up Result. Yonsei Med J. 2017;58(2):453-7.
- 18. Xu N, Wei F, Liu X, Jiang L, Cai H, Li Z, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine (Phila Pa 1976). 2016;41(1):E50-54.
- 19. Safali S, Berk T, Makelov B, Acar MA, Gueorguiev B, Pape HC. The possibilities of personalized 3D printed implants - A case series study. Medicina. 2023;59(2):249.
- 20. Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016;8:57-66.
- 21. Jain S, Giannoudis PV. Arthrodesis of the hip and conversion to total hip arthroplasty: A systematic review. J Arthroplasty. 2013;28(9):1596-1602. doi: https://doi.org/10.1016/j.arth.2013.01.025.
- 22. Citak M, Kochsiek L, Gehrke T, Haasper C, Suero EM, Mau H. Preliminary results of a 3D-printed acetabular component in the management of extensive defects. HIP International. 2018;28(3):266-71.
- 23. Wong RCW, Tideman H, Kin L, Merkx MAW. Biomechanics of mandibular reconstruction: a review. Int J Oral Maxillofac Surg. 2010;39(4):313-9. doi: https://doi.org/10.1016/j.ijom.2009.11.003.
- 24. Sugiura T, Yamamoto K, Horita S, Murakami K, Kirita T. Micromotion analysis of different implant configuration, bone density, and crestal cortical bone thickness in immediately loaded mandibular full-arch implant restorations: A nonlinear finite element study. Clin Implant Dent Relat Res. 2018;20(1):43-9. doi: https://doi.org/10.1111/cid.12573.
- 25. Ti-6Al-4V-ELI (low O2) [Internet]. [cited 2024 Apr 3]. Available from: https://www.efunda.com/materials/alloys/alloy_home/show_alloy_found.cfm?ID=T19_AB&show_prop=all&Page_Title=Ti-6Al-4V-ELI%28lowO%3Csub%3E2%3C%2Fsub%3E%29.
- 26. Szymczyk-Ziółkowska P, Ziółkowski G, Hoppe V, Rusińska M, Kobiela K, Madeja M, et al. Improved quality and functional properties of Ti-6Al-4V ELI alloy for personalized orthopedic implants fabrication with EBM process. J Manuf Process. 2022;76:175-94. doi: https://doi.org/10.1016/j.jmapro.2022.02.011.
- 27. Szymczyk-Ziółkowska P, Hoppe V, Gąsiorek J, Rusińska M, Kęszycki D, Szczepański Ł, et al. Corrosion resistance characteristics of a Ti-6Al-4V ELI alloy fabricated by electron beam melting after the applied post-process treatment methods. Biocybern Biomed Eng. 2021;41(4):1575-88. doi: https://doi.org/10.1016/j.bbe.2021.10.002.
- 28. Bisht M, Ray N, Verbist F, Coeck S. Correlation of selective laser melting-melt pool events with the tensile properties of Ti-6Al-4V ELI processed by laser powder bed fusion. Addit Manuf. 2018;22:302-6. doi: https://doi.org/10.1016/j.addma.2018.05.004.
- 29. Karpiński R, Jaworski Ł, Czubacka P. The structural and mechanical properties of the bone. JTEME. 2017;3(1):43-51. doi: https://doi.org/10.35784/jteme.538.
- 30. Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. JMST. 2012;28(1):1-14. doi: https://doi.org/10.1016/S1005-0302(12)60016-4.
- 31. Szymczyk P, Junka A, Ziólkowski G, Smutnicka D, Bartoszewicz M, Chlebus E. The ability of S. aureus to form biofilm on the TI-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications. Acta Bioeng Biomech. 2013;15(1):69-76.
- 32. Van Kootwijk A, Moosabeiki V, Saldivar MC, Pahlavani H, Leeflang MA, Kazemivand Niar S, et al. Semi-automated digital workflow to design and evaluate patient-specific mandibular reconstruction implants. J Mech Behav Biomed Mater.2022;132:105291. doi: https://doi.org/10.1016/j.jmbbm.2022.105291.
- 33. Du R, Su YX, Yan Y, Choi WS, Yang WF, Zhang C, et al. A systematic approach for making 3D-printed patient-specific implants for craniomaxillofacial reconstruction. Engineering. 2020;6(11):1291-1301. doi: https://doi.org/10.1016/j.eng.2020.02.019.
- 34. Jehn P, Spalthoff S, Korn P, Zeller AN, Dittmann J, Zimmerer R, et al. Patient-specific implant modification for alloplastic bridging of mandibular segmental defects in head and neck surgery. J Craniomaxillofac Surg. 2020;48(3):315-22. doi: https://doi.org/10.1016/j. jcms.2020.01.018.
- 35. Xia Y, Feng ZC, Li C, Wu H, Tang C, Wang L, et al. Application of additive manufacturing in customized titanium mandibular implants for patients with oral tumors. Oncol Lett. 2020; 20(4): 51. doi: https://doi. org/10.3892/ol.2020.11912.
- 36. Alasseri N, Alasraj A. Patient-specific implants for maxillofacial defects: Challenges and solutions. Maxillofac Plast Reconstr Surg. 2020;42(1):15. doi: https://doi.org/10.1186/s40902-020-00262-7.
- 37. Goodson AMC, Kittur MA, Evans PL, Williams EM. Patient-specific, printed titanium implants for reconstruction of mandibular continuity defects: A systematic review of the evidence. J Craniomaxillofac Surg. 2019;47(6):968-76. doi: https://doi.org/10.1016/j. jcms.2019.02.010.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-089b0f97-d187-463e-984d-dc5baf36b0e9