Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 28, Fasc. 1 | 143--162
Tytuł artykułu

On Besov regularity of Brownian motions in infinite dimensions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We extend to the vector-valued situation some earlier work of Ciesielski and Roynette on the Besov regularity of the paths of the classical Brownian motion.We also consider a Brownian motion as a Besov space valued random variable. It turns out that a Brownian motion, in this interpretation, is a Gaussian random variable with some pathological properties. We prove estimates for the first moment of the Besov norm of a Brownian motion. To obtain such results we estimate expressions of the form E supn­1‖ξn‖, where ξn are independent centered Gaussian random variables with values in a Banach space. Using isoperimetric inequalities we obtain two-sided inequalities in terms of the first moments and the weak variances of ξn.
Wydawca

Rocznik
Strony
143--162
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • Department of Mathematics and Statistics, University of Helsinki, Gustaf Hällströmin katu 2B, FI-00014 Helsinki, Finland, tuomas.hytonen@helsinki.fi
  • Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warsaw, Poland, mark@profsonline.nl
Bibliografia
  • [1] V. I. Bogachev, Gaussian Measures, Math. Surveys Monogr., Vol. 62, Amer. Math. Soc., Providence, RI, 1998.
  • [2] Z. Ciesielski, Modulus of smoothness of the Brownian paths in the Lp norm, in: Constructive Theory of Functions, Varna, Bulgaria, 1991, pp. 71-75.
  • [3] Z. Ciesielski, Orlicz spaces; spline systems; and Brownian motion, Constr. Approx. 9 (2-3) (1993), pp. 191-208.
  • [4] T. Hytönen, Iterated Wiener integrals and the finite cotype property of Banach spaces, preprint.
  • [5] O. Kallenberg, Foundations of Modern Probability, 2nd edition, Probab. Appl. (N.Y.), Springer, New York 2002.
  • [6] H. König, Eigenvalue Distribution of Compact Operators, Oper. Theory Adv. Appl., Vol. 16, Birkhäuser, Basel 1986.
  • [7] M. A. Krasnosel’skiĭ and Ja. B. Rutickiĭ, Convex Functions and Orlicz Spaces, translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen 1961.
  • [8] S. Kwapień and W. A. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple, Probab. Appl., Birkhäuser Boston Inc., Boston, MA, 1992.
  • [9] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Ergeb. Math. Grenzgeb. (3), Vol. 23, Springer, Berlin 1991.
  • [10] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., Vol. 146, Marcel Dekker Inc., New York 1991.
  • [11] B. Roynette, Mouvement brownien et espaces de Besov, Stoch. Stoch. Rep. 43 (3-4) (1993), pp. 221-260.
  • [12] H. Triebel, Interpolation Theory; Function Spaces; Differential Operators, 2nd edition, Johann Ambrosius Barth, Heidelberg 1995.
  • [13] N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, Probability Distributions on Banach Spaces, Math. Appl. (Soviet Ser.), Vol. 14, D. Reidel Publishing Co., Dordrecht 1987.
  • [14] A. C. Zaanen, Riesz Spaces. II, North-Holland Math. Library, Vol. 30, North-Holland, Amsterdam 1983.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0894f7fb-810d-4a5b-9168-0dfbbc1ffe5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.