Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 64, nr 3 | 369--383
Tytuł artykułu

Ecological Niche Modeling of Invasive Plant Species According to Invasion Status and Management Needs : The Case of Chromolaena odorata (Asteraceae) in South Africa

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The management of invasive plant species (IPS) requires knowledge of areas susceptible to invasion and the origin of the invasive biotypes. Ecological niche models (ENMs) are useful for these purposes, but modeling results depend on the data sources. We propose a synthetic approach to determine the selection of data source areas considering the invasion status of an IPS and management objectives to deal with the IPS. We assessed the importance of data source for ENMs and their projections to invasive areas using Chromolaena odorata, a Neotropical weed, in South Africa where this IPS is invading. We used MaxEnt to perform ENMs using different datasets from C. odorata's native range and from South Africa. We employed reciprocal ENM projections to find the probable native region of the plants invading South Africa. ENMs varied depending on the native area selected as the hypothetical invasion source. The modeling approach using worldwide data was most appropriate for prevention purposes, whereas the modelling approach using data from the Americas was most suitable for estimating invasion-susceptible areas in South Africa. The South African ENM was useful for reciprocal modelling but not for prediction of areas susceptible to invasion. ENM projections from the Americas to South Africa and vice-versa identified two native areas as possible invasion sources (northern Mexico and southern tropical South America). Their concordance with the South African ENM can be useful to search for natural enemies of C. odorata's and to reinforce the identification of invasion-susceptible areas in South Africa. We suggest that the various ENM obtained with the synthetic approach in modeling with different data sources for C. odorata cover the scenarios that depend on management purpose and invasion status for this weed.
Wydawca

Rocznik
Strony
369--383
Opis fizyczny
Bibliogr. 51 poz., mapa, tab.
Twórcy
autor
  • Instituto de Biología, Universidad Nacional Autónoma de México, Departamento de Botánica, Apartado Postal 70-367, 04510 México, D.F., México
  • Instituto de Biología, Universidad Nacional Autónoma de México, Departamento de Botánica, Apartado Postal 70-367, 04510 México, D.F., México
  • Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México., Antigua Carretera a Pátzcuaro # 8701, Col. Ex-Hacienda de San José de la Huerta 58190, Morelia, Michoacán, México
Bibliografia
  • [1] Almeida-Neto M., Kubota U., Braun M. R., Lewinsohn T. M. 2010 — The impact of flower head endophages on seed set of a native population of Chromolaena odorata (L. ) King and Robinson (Asteraceae) — Bioikos, 24: 105–112.
  • [2] Ambika S. R. 2002 — The influence of environmental factors on seedling growth in Chromolaena odorata (In: Proceedings of the fifth international workshop on biological control and management of Chromolaena odorata, Eds: C. Zachariades, R. Muniappan, L.W Strathie) — ARC-PRI Durban, South Africa, pp. 106–117.
  • [3] Araújo M. B., Pearson R. G., Thuiller W., Erhard M. 2005 — Validation of species-climate impact models under climate change — Glob. Change Biol. 11: 1504–1513.
  • [4] Beaumont L. J., Gallagher R. V., Downey P. O., Thuiller W., Leishman M. R., Hughes L. 2013 — Modelling the impact of Hieracium spp. on protected areas in Australia under future climates — Ecography, 32: 757–764.
  • [5] Bidinger K., Lötters S., Rödder D., Veith M. 2012 — Species distribution models for the alien invasive Asian Harlequin lady bird (Harmonia axyridis) — Jap. J. Appl. Ent. Zool. 136: 109– 123.
  • [6] Blackburn T. M., Pysek P., Bacher S., Carlton J. T., Duncan R. P., Jarosik V., Wilson J. R. U., Richardson D. M. 2011 — A proposed unified framework for biological invasions — Trends in Ecol. Evol. 26: 333–339.
  • [7] Cohen J. 1960 — A Coefficient of Agreement for Nominal Scales — Educat. Psychol. Measur. 20: 37–46.
  • [8] De Rouw A. 1991 — The invasion of Chromolaena odorata (L.) King and Robinson (ex Eupatorium odoratum) and competition with the native flora, in a Rain Forest Zone, South-West Cote d'lvoire — J. Biogeogr. 18: 13–23.
  • [9] Elith J., Graham C., Anderson R., Group N. W. 2006 — Novel methods improve prediction of species distributions from occurrence data — Ecography, 29: 129–151.
  • [10] Elith J., Phillips S. J., Hastie T., Dudik M., Chee Y. E., Yates C. J. 2011 — A statistical explanation of MaxEnt for ecologists — Divers. Distrib. 17: 43–57.
  • [11] Ficetola G. F., Thuiller W., Miaud C. 2007 — Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog — Divers. Distrib. 13: 476–485.
  • [12] Forman R. T. T. 1995 — Some general principles of landscape and regional ecology — Lands. Ecol. 10: 133–142.
  • [13] Gallien L., Münkemüller T., Albert C. H., Boulangeat I., Thuiller W. 2010 — Predicting potential distributions of invasive species: where to go from here? — Divers. Distrib. 16: 331–342.
  • [14] García-Palomo A., Macías J. L., Arce J. L., et al. 2006 — Geological evolution of the Tacaná Volcanic Complex, México-Guatemala — Geol. Soc. of Am. Spec. Pars. 412: 39–57.
  • [15] GBIF (Global Biodiversity Information Facility). 2013. www.gbif.org.
  • [16] Goodall J. M., Erasmus D. J. 1996 — Review of the status and integrated control of the invasive alien weed, Chromolaena odorata, in South Africa — Agr. Ecosyst. Environ. 56: 151–164.
  • [17] Graham C. H., Elith J., Hijmans R. J., Guisan A. and Peterson A. T. 2008 — The influence of spatial errors in species occurrence data used in distribution models — J. Appl. Ecol. 45: 239–247.
  • [18] Guisan A., Thuiller W. 2005 — Predicting species distribution: offering more than simple habitat models — Ecol. Lett. 8: 993–1009.
  • [19] Hernández I. U., Ellis E. A., Gallo C. A. 2013 — Aplicación de teledetección y sistemas de información geográfica para el análisis de deforestación y deterioro de selvas tropicales en la región Uxpanapa, Veracruz [Applying remote sensing and geographical information systems for analyzing tropical forest deforestation and degradation in the Uxpanapa region, Veracruz] — GeoFocus, 13: 1–24 (in Spanish with English summary).
  • [20] Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. 2005 — Very high resolution interpolated climate surfaces for global land areas — Int. J. Climatol. 25: 1965–1978.
  • [21] Hijmans R. J., Graham C. 2006 — The ability of climate envelope models to predict the effect of climate change on species distributions — Glob. Change Biol. 12: 2272–2281.
  • [22] Hilliard O. M. 1977 — Compositae in Natal — University of Natal Press, Pietermaritzburg, South Africa.
  • [23] IUCN 2000 — IUCN guidelines for the prevention of biodiversity loss caused by alien invasive species — http://iucn.org./themes/ssc/pubs/policy/invasivesEng.htm.
  • [24] Koutika L. S., Rainey H. J. 2010 — Chromolaena odorata in different ecosystems: weed or fallow plant? — Appl. Ecol. Environ. Res. 8: 131–142.
  • [25] Kriticos D. J., Phillips C. B., Suckling D. M. 2005a —. Improving border biosecurity: potential economic benefits to New Zealand — N. Z. Plant Prot. 58: 1–6.
  • [26] Kriticos D. J., Yonow T., Mcfadyen R. E. 2005b —. The potential distribution of Chromolaena odorata (Siam weed) in relation to climate — Weed Res. 45: 246–254.
  • [27] Liu C., White M., Newell G. 2011 — Measuring and comparing the accuracy of species distribution models with presence—absence data — Ecography, 34: 232–243.
  • [28] Lonsdale W. M. 1999 — Global patterns of plant invasions and the concept of invasibility — Ecology, 80: 1522–1536.
  • [29] Lonsdale W. M. 2011 — Risk assessment and Prioritization (In: Encyclopedia of Biological Invasions, Eds: D. Simberloff, M. Rejmánek) — University of California Press, Berkeley, U.S.A. pp. 604–609.
  • [30] Lowe S., Browne M., Boudjelas S., De Poorter M. 2000 — 100 of the world's worst invasive alien species. A selection from the global invasive species database — Auckland, New Zealand, Available: http://www.issg.org/database/species/reference_files/100English.pdf.
  • [31] Mack R. N., Simberloff D., Lonsdale W. M., Evans H., Clout M., Bazzaz F. A. 2000 — Biotic invasions: causes, epidemiology, global consequences and control — Ecol. Appl. 10: 689–710.
  • [32] Medley K. A. 2010 — Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models — Global Ecol. Biogeogr. 19: 122–133.
  • [33] Myśliwy M. 2014 — Habitat preferences of some neophytes, with a reference to habitat disturbances — Pol. J. Ecol. 62: 509–526.
  • [34] Peterson A. T., Vieglais D. A. 2001 — Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem — BioScience, 51: 363–371.
  • [35] Peterson A. T., Papes M. and Eaton M. 2007 — Transferability and model evaluation in ecological niche modeling: a comparison of GARP and MaxEnt — Ecography, 30: 550–560.
  • [36] Peterson A. T., Soberón J., Pearson R. G., Anderson R., Martínez-Meyer E., Nakamura M. and Araujo M. 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton, 328 pp.
  • [37] Petitpierre B., Kueffer C., Broennimann O., Randin C., Daehler C., Guisan A. 2012 — Climatic niche shifts are rare among terrestrial plant invaders — Science, 335: 1344–1348.
  • [38] Phillips S. J. 2008 — Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007) — Ecography, 31: 272–278.
  • [39] Phillips S. J., Dudik M. 2008 — Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation — Ecography, 31: 161–175.
  • [40] Rutledge D. 2003 — Landscape indices as measures of the effects of fragmentation: can pattern reflect process? DOC Science Internal Series 98 — Department of Conservation, Wellington, New Zealand, 27 pp.
  • [41] Sánchez-Blanco J., Sánchez-Blanco C., Sousa S. M., Espinosa-García F. J. 2012 — Assessing introduced Leguminosae in Mexico to identify potentially high-impact invasive species — Acta Bot. Mex. 100: 43–79.
  • [42] Thuiller W., Lafourcade B., Engler R., Araújo M. B. 2009 — BIOMOD — A platform for ensemble forecasting of species distributions — Ecography, 32: 369–373.
  • [43] Verbruggen H. L., Tyberghein G. S., Belton F., Mineur A., Jueterbock A., Hoarau G., Durgel C. F. D., De Clerck O. 2013 — Improving transferability of introduced species' distribution models: new tools to forecast the spread of a highly invasive seaweed — PlosOne, 8: e68337.
  • [44] Vilà M., Pino J., Font X. 2007 — Regional assessment of plant invasions across different habitat types — J. Veg. Sci. 18: 35–42.
  • [45] Vilà M., Pujadas J. 2001 — Land-use and socio-economic correlates of plant invasions in European and North African countries — Conserv. Biol. 100: 397–401.
  • [46] Villaseñor J. L. 1990 — The genera of Asteraceae endemic to Mexico and adjacent regions — Aliso, 12: 685–692.
  • [47] Vitousek P. M., D'Antonio C. M., Loope L. L., Rejmanek M., Westerbrooks R. 1997 — Introduced species: a significant component of human-caused global change — J. Ecol. 21: 1–16.
  • [48] Warren D. L., Glor R. E., Turelli M. 2008 — Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution — Evolution, 62: 2868–2883.
  • [49] Westbrooks R. G., Eplee R. E. 2011 — Early Detection and Rapid Response (In: Encyclopedia of Biological Invasions, Eds: D. Simberloff, M. Rejmánek) — University of California Press, Berkeley, U.S.A. pp. 169–177.
  • [50] Witkowski E. T. F., Wilson M. 2001 — Changes in density, biomass, seed banks and seed production of the alien invasive plant Chromolaena odorata, along a 15-year chronosequence — Plant Ecol. 152: 13–27.
  • [51] Zachariades C., Strathie L. W., Retief E., Dube N. 2011 — Progress towards the biological control of Chromolaena odorata (L.) R.M.King and H.Rob. (Asteraceae) in South Africa — Plant Ecol. 19: 282–302.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-085144c1-2135-4ceb-b8e8-afd28496205f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.