Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes a fundus retinal blood vessel segmentation model based on a deep convolutional network structure and biological visual feature extraction mechanism. It aims to solve the multi-scale problem of blood vessels in the fundus retinal blood vessel segmentation task in the field of medical image processing on the basis of increasing the biological interpretability of the model. First, the subject feature information of the retinal blood vessel image is obtained by using the non-subsampled Residual Bolck convolution main channel. Secondly, combined with the study of biological vision mechanisms, an information processing model of the Retina-Exogenius-Primary visual cortex (V1) ventral visual pathway was established. Gabor functions of different scales are used to simulate the structure of different levels of the visual pathway, and the scale information at different levels is integrated into the corresponding hierarchical stages of the convolutional main pathway network to enrich the information of small blood vessels and enhance the semantic information of the overall blood vessels. Finally, considering the imbalance of the ratio of vessel and nonvessel pixels, an adaptive optimization scheme using hybrid loss function weights is proposed to enhance the priority of blood vessel pixels in the calculation of the loss function. According to the experimental results on the STARE, DRIVE and CHASE_DB1 data sets, the model still achieves superior performance evaluation indicators overall compared with the existing optimal methods in the fundus retinal blood vessel segmentation task. This research is of great significance to the field of medical image processing and can provide more accurate auxiliary diagnostic information for clinical diagnosis and treatment.
Czasopismo
Rocznik
Tom
Strony
402--413
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China, fangtao@hdu.edu.cn
- Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking, Hangzhou 310027, China
- Laboratory of Pattern Recognition and Image Processing, Hangzhou Dianzi University, Hangzhou 310018, China
autor
- Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking, Hangzhou 310027, China, zhefeicai@hdu.edu.cn
- Laboratory of Pattern Recognition and Image Processing, Hangzhou Dianzi University, Hangzhou 310018, China
autor
- Laboratory of Pattern Recognition and Image Processing, Hangzhou Dianzi University, Hangzhou 310018, China, fan@hdu.edu.cn
Bibliografia
- [1] Tan Y, Zhao S, Yang K, Li Y. A lightweight network guided with differential matched filtering for retinal vessel segmentation. Comput Biol Med 2023;160: 106924.
- [2] Tan Y, Yang K, Zhao S, Li Y. Retinal vessel segmentation with skeletal prior and contrastive loss. IEEE Trans Med Imaging 2022;41(9):2238-51.
- [3] Qin Q, Chen Y. A review of retinal vessel segmentation for fundus image analysis. Eng Appl Artif Intel 2024;128:107454.
- [4] Sun K, Chen Y, Dong F, Wu Q, Geng J, Chen Y. Retinal vessel segmentation method based on RSP-SA Unet network. Med Biol Eng Comput 2023:1-16.
- [5] Zhu Y, Xu X, Zhang X, Jiang M. CCS-UNet: a cross-channel spatial attention model for accurate retinal vessel segmentation. Biomed Opt Express 2023;14(9):4739-58.
- [6] Zhang B, Zhang L, Zhang L, Karray F. Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 2010;40(4):438-45.
- [7] Odstrcilik J, Kolar R, Budai A, Hornegger J, Jan J, Gazarek J, et al. Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Proc 2013;7(4):373-83.
- [8] Zhang J, Dashtbozorg B, Bekkers E, et al. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans Med Imaging 2016;35(12):2631-44.
- [9] Fraz MM, Remagnino P, Hoppe A. Blood vessel segmentation methodologies in retinal images-a survey. Comput Methods Programs Biomed 2012;108(1):407-33.
- [10] Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017;19:221-48.
- [11] Razzak MI, Naz S, Zaib A. Deep learning for medical image processing: Overview, challenges and the future. Classification in BioApps: Automation of Decision Making 2018:323-50.
- [12] Guo Z, Li X, Huang H. Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans Radiat Plasma Med Sci 2019;3(2):162-9.
- [13] Wang G, Li W, Zuluaga M. Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans Med Imaging 2018;37(7): 1562-73.
- [14] Zhou D. Theory of deep convolutional neural networks: Downsampling. Neural Netw 2020;124:319-27.
- [15] Wang P, Vasconcelos N. A generalized explanation framework for visualization of deep learning model predictions. IEEE Trans Pattern Anal Mach Intell 2023.
- [16] Chaudhuri S, Chatterjee S, Katz N, et al. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 1989;8(3):263-9.
- [17] Soares J, Leandro J, Cesar R. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 2006;25(9): 1214-22.
- [18] Alhussein M, Aurangzeb K, Haider S. An unsupervised retinal vessel segmentation using hessian and intensity based approach. IEEE Access 2020;8:165056-70.
- [19] Zana F, Klein J. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 2001;10(7): 1010-9.
- [20] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
- [21] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing, 2015: 234-241.
- [22] Uysal E, Güraksin G. Computer-aided retinal vessel segmentation in retinal images: convolutional neural networks. Multimed Tools Appl 2021;80:3505-28.
- [23] Oliveira A, Pereira S, Silva C. Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst Appl 2018;112:229-42.
- [24] Oktay O, Schlemper J, Folgoc L. Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.
- [25] Zhou Z, Rahman Siddiquee M, Tajbakhsh N, Liang J. Unet++: A nested u-net architecture for medical image segmentation[C]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4. Springer International Publishing, 2018: 3-11.
- [26] Mou L, Zhao Y, Chen L, Cheng J, Gu Z, Hao H, et al. 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part I 22. Springer International Publishing 2019;2019:721-30.
- [27] Wu H, Wang W, Zhong J, Lei B, Wen Z, Qin J. Scs-net: A scale and context sensitive network for retinal vessel segmentation. Med Image Anal 2021;70:102025.
- [28] Liu W, Yang H, Tian T, et al. Full-resolution network and dual-threshold iteration for retinal vessel and coronary angiograph segmentation. IEEE J Biomed Health Inform 2022;26(9):4623-34.
- [29] Abbasi M, Iqbal S, Naveed A, Khan T, Naqvi S, Khalid W. LMBiS-Net: A Lightweight Multipath Bidirectional Skip Connection based CNN for Retinal Blood Vessel Segmentation. arXiv preprint arXiv:2309.04968, 2023.
- [30] Iqbal S, Khan T, Alhussein M, Naqvi S, Usman M, Aurangzeb K. LDMRes-Net: Enabling Real-Time Disease Monitoring through Efficient Image Segmentation. arXiv preprint arXiv:2306.06145, 2023.
- [31] Panchal S, Kokare M. ResMU-Net: Residual Multi-kernel U-Net for blood vessel segmentation in retinal fundus images. Biomed Signal Process Control 2024;90: 105859.
- [32] Ding W, Sun Y, Huang J, Ju H, Zhang C, Yang G, et al. RCAR-UNet: Retinal vessel segmentation network algorithm via novel rough attention mechanism. Inf Sci 2024;657:120007.
- [33] Fang T, Fan Y, Wu W. Salient contour detection on the basis of the mechanism of bilateral asymmetric receptive fields. SIViP 2020;14:1461-9.
- [34] Zhu S, Xie T, Lv Z, Leng Y, Zhang Y, Xu R, et al. Hierarchies in visual pathway: functions and inspired artificial vision. Adv Mater 2024;36(6):2301986.
- [35] Dong S, Gong Y, Shi J, Shang M, Tao X, Wei X, et al. Brain cognition-inspired dual-pathway CNN architecture for image classification. IEEE Trans Neural Networks Learn Syst 2023.
- [36] Bertoni F, Citti G, Sarti A. LGN-CNN: a biologically inspired CNN architecture. Neural Netw 2022;145:42-55.
- [37] Zhang J, Cao L, Lai Q, Li B, Qin Y. BIFRNet: a brain-inspired feature restoration DNN for partially occluded image recognition[C]. Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(12): 15296-15304.
- [38] Tan Y, Yang K, Zhao S, Li Y. Deep matched filtering for retinal vessel segmentation. Knowl-Based Syst 2024;283:111185.
- [39] Kravitz D, Saleem K, Baker C, Ungerleider L, Mishkin M. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 2013;17(1):26-49.
- [40] Eric R, James H, Thomas M. Principles of neural science[M]. New York: Elsevier; 1991.
- [41] Westheimer G. Lines and Gabor functions compared as spatial visual stimuli. Vision Res 1998;38(4):487-91.
- [42] Prencipe B, Altini N, Cascarano G, Brunetti A, Guerriero A, Bevilacqua V. Focal dice loss-based V-Net for liver segments classification. Appl Sci 2022;12(7):3247.
- [43] Zhang L, Wu X, Zhang J, et al. SEG-LUS: A Novel Ultrasound Segmentation Method for Liver and its Accessory Structures Based on Muti-head Self-Attention. Comput Med Imaging Graph 2024;102338.
- [44] Yeung M, Sala E, Schönlieb C, et al. Unified focal loss: Generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput Med Imaging Graph 2022;95:102026.
- [45] Hossain M, Betts J, Paplinski A. Dual Focal Loss to address class imbalance in semantic segmentation. Neurocomputing 2021;462:69-87.
- [46] Hoover A, Goldbaum M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 2003;22(8):951-8.
- [47] Staal J, Abràmoff MD, Niemeijer M, Viergever M, Van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 2004;23 (4):501-9.
- [48] Zhang J, Dashtbozorg B, Bekkers E, Pluim J, Duits R, Romeny B. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans Med Imaging 2016;35(12):2631-44.
- [49] Deng X, Ye J. A retinal blood vessel segmentation based on improved D-MNet and pulse-coupled neural network. Biomed Signal Process Control 2022;73:103467.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-08422563-abf6-4ad3-aa5e-661c314aa795