Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | R. 26, nr 1 | 55--66
Tytuł artykułu

Pochłanianie fal elektromagnetycznych przez kompozyty z cementu wapniowo-siarczanoglinianowego z nanopłytkami grafenu

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Electromagnetic wave-absorbing properties of graphene nanoplatelets - calcium sulfoaluminate cement - based composites
Języki publikacji
PL EN
Abstrakty
PL
W pracy badano kompozyty z cementu wapniowo-siarczanoglinianowego z dodatkiem nanopłytek grafenu. Zbadano wpływ zawartości nanopłytek grafenu i grubości próbek na właściwości absorpcyjne kompozytów oraz zbadano związany z tym mechanizm absorpcji. Wyniki wykazały, że próbka o grubości 25 mm wykazywała dobrą absorpcję fal elektromagnetycznych, przy zawartości ok. 0,06% nanopłytek grafenu. Minimalna wartość tłumienia wskutek odbicia była równa -30,8 dB przy 8,7 GHz, a szerokość badanego pasma [<-5 dB] wynosiła 9,5 GHz. Zwiększenie udziału nanopłytek grafenu do 0,08%, nie poprawia znacząco absorpcji fal elektromagnetycznych. Właściwości pochłaniania można poprawić, zwiększając grubość próbki. Próbka o grubości 35 mm wykazała bardzo dobre właściwości absorpcji szerokopasmowej.
EN
In this paper, graphene nanoplatelets [GNPs] in calcium sulfoaluminate cement-based composites were prepared. The effects of graphene nanoplatelets content and sample thickness on the absorbing properties of composites were studied and the related mechanism was investigated. The experimental results have shown that the sample with a thickness of 25mm exhibited good electromagnetic wave [EMW] absorption, when the content of graphene nanoplatelets is 0.06%. The minimum reflectivity is -30.8 dB at 8.7 GHz, and the cumulative bandwidth [< -5 dB] is 9.5 GHz. When the content of GNPs is increased to 0.08%, the EMW absorption property of the sample does not enhance remarkably. The absorbing property can be improved by adjusting the thickness of sample. The specimen with a thickness of 35 mm performed excellent broadband absorption characteristics.
Wydawca

Czasopismo
Rocznik
Strony
55--66
Opis fizyczny
Bibliogr. 43 poz., il., tab.
Twórcy
  • School of Civil Engineering, Dalian University of Technology, Dalian, P.R. China, xingjun@dlut.edu.cn
autor
  • Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, P.R. China), duanyp@dlut.edu.cn
  • Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, P.R. China)
Bibliografia
  • 1. A.V. Kramarenko, K. Ukraine, Effects of high-frequency electromagnetic fields on human EEG: A brain mapping study. Intern. J. Neuroscience. 113, 1007-1019 (2003).
  • 2. M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon. 47, 1738-1746 (2009).
  • 3. F. Qin, H.-X. Peng, Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci. 58, 183-259 (2013).
  • 4. X. Sun, J.P. H e, G.X. Li, J. Tang, T. Wang, Y. Guo, H. Xue, Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C. 1, 765-777 (2013).
  • 5. G.B. Sun, B.X. Dong, M.H. Cao, B. Wei, C. Hu, Hierarchical Dendrite-Like Magnetic Materials of Fe3O4, gamma-Fe2O3, and Fe with High Performance of Microwave Absorption. Chem. Mater. 23, 1587-1593 (2011).
  • 6. Q.L. Liu, D. Z hang, T.X. Fan, Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 93, 1-3 (2008).
  • 7. K.Z. Li, Wang, C. H.J. Li, X.T. Li, H.B. Quyang, J. Wei, Efect of chemical vapor deposition treatment of carbon fibers on the reflectivity of carbon fiber-reinforced cement-based composites. Comp. Sci. Techn. 68, 1105-1114 (2008).
  • 8. B.W. Guan, D.H . Ding, L.F. Wang, J. Wu, R. Xiong, The electromagnetic wave absorbing properties of cement-based composites using natural magnetite powders as absorber. Mater. Res. Exp. 4, 1-6 (2017).
  • 9. Y.J. He, P.H. Xiao, G.F. Li, et al, Preparation and microwave absorbing properties of nanometer Fe3O4/cement composites. J. Wuhan Univ. Techn. 37, 7-11 (2015).
  • 10. C. Wang, X.J. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98, 072906 (2011).
  • 11. K.S. Novoselov , A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004).
  • 12. I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, K.L. Shepard, Current saturation in zero-bandgap, topgated graphene field-effect transistors. Nature Nanotechn. 3, 654-659 (2008).
  • 13. D. Gunlycke, D .A. Areshkin, J.W. Li, J.W. Mintmire, C.T. White, Graphene nanostrip digital memory device. Nano Lett. 7, 3608-3611 (2007).
  • 14. M. Sloma, G. Wroblewski, D. Janczak, M. Jakubowska, Transparent Electrodes with Nanotubes and Graphene for Printed Optoelectronic Applications. J. Nanomater. 2014, 143094 (2014).
  • 15. B. Janardhan, J.X. Yang, S. Xiao, Q. Bao, M. Jahan, L. Polavarapu, J. Wei, Q-H. Xu, K.P. Loh, A Graphene Oxide-Organic Dye Ionic Complex with DNA-Sensing and Optical-Limiting Properties. Angew. Chem. Int. Ed. 49(37), 6549-6553 (2010).
  • 16. Y.B. Tang, L. Chun-Sing, J. Xu, et al, Incorporation of Graphenes in Nanostructured TiO2 Films via Molecular Grafting for Dye-Sensitized Solar Cell Application. ACS Nano. 4(6), 3482-3488 (2010).
  • 17. X.M. Li, J.L. Chang, F. Xu, X. Wang, Y. Lang, Z. Gao, D. Wu, K. Jiang, Pyrolytic synthesis of carbon quantum dots, and their photoluminescence properties. Res. Chem. Intermed. 41, 813-819 (2015).
  • 18. C.S. Shan, H.F . Yang, D.X. Han, Q. Zhang, A. Ivaska, L. Niu, Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens. Bioelectron. 25, 1504-1508 (2010).
  • 19. J.J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Electromagnetic interference shielding of graphene/epoxy composites. Carbon. 47, 922-925 (2009).
  • 20. A. Mohammed, J.G. Sanjayan, W.H. Duan, A. Nazari, Incorporating graphene oxide in cement composites: A study of transport properties. Constr. Build. Mater. 84, 341-347 (2015).
  • 21. F. Zhou, Investigation on Properties of Cementitious Materials Reinforced by Graphene, MSc Thesis, University of Pittsburgh, Pittsburgh (2014).
  • 22. H.J. Du, S.D. Pang, Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cem. Concr. Res. 76, 10-19 (2015).
  • 23. R. Alves de Silva G.P. de Castro Guetti, M. S. da Luza, F. Rouxinolb, R. V. Gelamoa, Enhanced properties of cement mortars with multilayer graphene nanoparticles. Constr. Build. Mater. 149, 378-385 (2017).
  • 24. H.W. Ha, A. Choudhury, T. Kamal, D.-H. Kim, S.-Y. Park, Efect of Chemical Modification of Graphene on Mechanical, Electrical, and Thermal Properties of Polyimide/Graphene Nanocomposites. ACS Appl. Mater. Interfaces. 4, 4623-4630(2012).
  • 25. S. Mohamed, T. Leung, J. Fung, M. Rahman, F. Sillars, J. Liggat, X. Zhou, Graphene/fly ash geopolymeric composites as self-sensing structural materials. Smart Mater. Struct. 23, 1-10 (2014).
  • 26. T. Orsolya, T. Levente, H. Lemmel, V. Puchy, J. Dusza, C. Balázsi, K. Balázsi, High orientation degree of graphene nanoplatelets in silicon nitride composites prepared by spark plasma sintering. Ceram. Intern. 42, 1002-1006(2016).
  • 27. A. Sedaghat, K.R. Manoj, A. Zayed, R. Kamal, N. Shanahan, Investigation of Physical Properties of Graphene-Cement Composite for Structural Applications. Open J. Comp. Mater. 4, 12-21 (2014).
  • 28. Y.S. Dai, C.H. Lu, Y. Ni, et al, Study on Wave-Absorbing Property of Cement. J. Build. Mater. 2009, 528-532 (2009) (in Chinese).
  • 29. Y. Liu, F. Luo , J.B. Su, W. Zhou, Enhanced mechanical, dielectric, and microwave absorption properties of ZnO/ZrSiO4 composite ceramics by adding Al2O3 powders. Phys. Stat. Solid. A. 211, 2574-2579(2014).
  • 30. W. Wei, W. Lu, Q. Yang, High concentration graphene aqueous dispersion and its gas-liquid interface self-assembled membrane. Carbon 26(01), 36-40 (2011).
  • 31. X.J. Lv, Y.P. Duan, C. Guoqing, Electromagnetic wave absorption properties of cement-based composites filled with graphene nano-platelets and hollow glass microspheres. Constr. Build. Mater. 162, 280-285 (2018).
  • 32. X. Zhang, X.Z. Ding, C.K. Ong, B.T.G. Tan, J. Yang, Dielectric and electrical properties of ordinary Portland cement and slag cement in the early hydration period. J. Mater. Sci. 31, 1345-1352 (1996).
  • 33. Z. J. Wang, L. N. Wu, J.G. Zhou, W. Cai, B. Sheng, Z. Jiang, Magnetite Nanocrystals on Multiwalled Carbon Nanotubes as a Synergistic Microwave Absorber. J. Phys. Chem. C. 117, 5446-5452 (2013).
  • 34. L. Quan, F.X. Qin, D. Estevez, H. Wang, H.X. Peng, Magnetic graphene for microwave absorbing application: Towards the lightest graphene-based absorber. Carbon. 125, 630-639 (2017).
  • 35. S.C. Kenneth, H.C. Robert, Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 9, 341-351 (1941).
  • 36. S.S. Kim, S.T. Kim, J.M. Ahn, H.H. Kim, Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density. J. Magn. Magn. Mater. 271, 39-45 (2004).
  • 37. Y. Wang, X.M. Wu, W.Z. Zhang, C. Luo, J. Li, Synthesis of ferromagnetic sandwich FeCo@graphene@PPy and enhanced electromagnetic wave absorption properties. J. Magn. Magn. Mater. 443, 358-365 (2017).
  • 38. L.J. Yu, Y.F. Zhu, C. Qian, Q. Fu, Y. Zhao, Y. Fu, Nanostructured Barium Titanate/Carbon Nanotubes Incorporated Polyaniline as Synergistic Electromagnetic Wave Absorbers. J. Nanomater. 2016, 1-8 (2016).
  • 39. L. Kong, X.W. Yin, X.Y. Yuan, Y. Zhang, X. Liu, L. Cheng, L. Zhang, Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon. 73, 185-193 (2014).
  • 40. Y. Yang, Z. Guo, H. Zhang, D. Huang, J. Gu, Z. Huang, F. Kang, T.A. Hatton, G.C. Rutledge, Electrospun magnetic carbon composite fibers: Synthesis and electromagnetic wave absorption characteristics. J. App. Pol. Sci. 127, 4288-4295 (2013).
  • 41. F.B. Meng, H.G . Wang, H. Fei, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Graphene-based microwave absorbing composites: A review and prospective. Composites B. 137, 260-277 (2018).
  • 42. X. Lv, J. Chen Junlei, X. Li, Z. Liu, Effects of temperature and time on microstructure and microwave electromagnetic properties of Ni doped manganese dioxides. Mater. Technol. 29(3): 159-166 (2014).
  • 43. M. L. Cao, H.X . Zhang, C. Zhang, Effect of graphene on mechanical properties and microstructure of cement paste. J. Harbin Inst. Techn. 47, 26-30 (2015) (in Chinese).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0812f417-53cb-4372-b185-390329505286
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.