Czasopismo
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (17 ; 04-07.09.2022 ; Sofia, Bulgaria)
Języki publikacji
Abstrakty
Hearing loss is one of the most significant sensory disabilities. It can have various negative effects on a person's quality of life, ranging from impeded school and academic performance to total social isolation in severe cases. It is therefore vital that early symptoms of hearing loss are diagnosed quickly and accurately. Audiology tests are commonly performed with the use of tonal audiometry, which measures a patient's hearing threshold both in air and bone conduction at different frequencies. The graphic result of this test is represented on an audiogram, which is a diagram depicting the values of the patient's measured hearing thresholds. In the course of the presented work several different artificial neural network models, including MLP, CNN and RNN, have been developed and tested for classification of audiograms into two classes - normal and pathological represented hearing loss. The networks have been trained on a set of 2400 audiograms analysed and classified by professional audiologists. The best classification performance was achieved by the RNN architecture (represented by simple RNN, GRU and LSTM), with the highest out-of-training accuracy being 98% for LSTM. In clinical application, the developed classifier can significantly reduce the workload of audiology specialists by enabling the transfer of tasks related to analysis of hearing test results towards general practitioners. The proposed solution should also noticeably reduce the patient's average wait time between taking the hearing test and receiving a diagnosis. Further work will concentrate on automating the process of audiogram interpretation for the purpose of diagnosing different types of hearing loss.
Rocznik
Tom
Strony
163--168
Opis fizyczny
Bibliogr. 24 poz., tab., wykr.
Twórcy
autor
- Department of Geoinformatics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland, michal.kassjanski@pg.edu.pl
autor
- Department of Geoinformatics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland, markulaw@pg.edu.pl
autor
- Department of Otolaryngology, Medical University of Gdansk, Smoluchowskiego Str. 17, 80-214 Gdansk, Poland, tomasz.przewozny@gumed.edu.pl
Bibliografia
- 1. World Health Organization. 2021. World report on hearing. https://www.who.int/publications/i/item/world-report-on-hearing.
- 2. Olusanya, B.O., Neumann, K.J., Saunders, J.E. 2014. The global burden of disabling hearing impairment: a call to action. Bull World Health Organ. 92(5):367–373,http://dx.doi.org/92/5/13-128728
- 3. Kapul, AA., Zubova, EI., Torgaev, SN., Drobchik, VV. 2017. Pure-tone audiometer. J Phys Conf Ser, http://dx.doi.org/10.1088/1742-6596/881/1/012010
- 4. Aras, V.P. 2003. Audiometry techniques, circuits, and systems, M. Tech. Credit Seminar Report, Electronic Systems Group, EE Dept, IIT Bombay
- 5. World Health Organization. 2013. Multi-country assessment of national capacity to provide hearing care
- 6. Tukaj, C., Kuczkowski, J., Sakowicz-Burkiewicz, M., Gulida, G., Tretiakow, D., Mionskowski, T., Pawelczyk, T. 2014. Morphological alterations in the tympanic membrane affected by tympanosclerosis: ultrastructural study. Ultrastruct Pathol. 38(2):69-73, http://dx.doi.org/10.3109/01913123.2013.833563
- 7. Narozny, W., Skorek, A., Tretiakow, D. 2021. Does Treatment of Sudden Sensorineural Hearing Loss in Patients With COVID-19 Require Anticoagulants? Otolaryngol Head Neck Surg. 165(1):236-237, http://dx.doi.org/10.1177/0194599820988511
- 8. Prashanth Prabhu, P., Jyothi, S. 2017. Audiological findings from an adult with thin cochlear nerves, Intractable & Rare Diseases Research, 6(1):72-75, http://dx.doi.org/10.5582/irdr.2016.01081
- 9. Przewoźny, T. Kuczkowski, J. 2017. Hearing loss in patients with extracranial complications of chronic otitis media. Otolaryngol Pol. 71(3), pp. 31-41, http://dx.doi.org/10.5604/01.3001.0010.0130
- 10. Elbaşı E., Obali M. 2012. Classification of Hearing Losses Determined through the Use of Audiometry using Data Mining, Conference: 9th International Conference on Electronics,Computer and Computation
- 11. Noma, N. G., Ghani, M. K. A. 2013. Predicting Hearing Loss Symptoms from Audiometry Data Using Machine Learning Algorithms. In Proceedings of the Software Engineering Postgraduates Workshop (SEPoW), p. 86, Penang, Malaysia
- 12. Charih, F., Bromwich, M., Mark, AE., Lefrançois, R., Green, JR. 2020. Data-Driven Audiogram Classification for Mobile Audiometry. Sci Rep 10, 3962, http://dx.doi.org/10.1038/s41598-020-60898-3
- 13. Margolis, R.H. and Saly, G.L. 2007. Toward a standard description of hearing loss. International journal of audiology, 46(12), pp.746-758, http://dx.doi.org/10.1080/14992020701572652
- 14. Crowson, MG., Lee, JW., Hamour, A., Mahmood, R., Babier, A., Lin, V., Tucci, DL., Chan, TCY. 2020. AutoAudio: Deep Learning for Automatic Audiogram Interpretation. J Med Syst. 44(9):163, http://dx.doi.org/10.1007/s10916-020-01627-1
- 15. Barbour, D.L., Wasmann, J-W. A. 2021. Performance and Potential of Machine Learning Audiometry, The Hearing Journal: Volume 74 - Issue 3 - p 40,43,44, http://dx.doi.org/10.1097/01.HJ.0000737592.24476.88
- 16. Aziz, B., Riaz, N., Rehman, A.U., Malik, M.I., Malik, K.I. 2021. Colligation of Hearing Loss and Chronic Otitis Media. Pakistan Journal of Medical and Health Sciences Vol. 15, Issue 8, pp. 1817, http://dx.doi.org/10.53350/pjmhs211581817
- 17. Raghavan, A., Patnaik, U. and Bhaudaria, A.S. 2020. An Observational Study to Compare Prevalence and Demography of Sensorineural Hearing Loss Among Military Personnel and Civilian Population. Indian Journal of Otolaryngology and Head & Neck Surgery, pp.1-6, http://dx.doi.org/10.1007/s12070-020-02180-6
- 18. Zieliński, S.K., Lee, H. 2018. Feature extraction of binaural recordings for acoustic scene classification. In 2018 Federated Conference on Computer Science and Information Systems (FedCSIS) (pp. 585-588), http://dx.doi.org/10.15439/2018F182
- 19. Agbehadji, I.E., Millham, R., Fong, S.J., Yang, H. 2018. Kestrel-based Search Algorithm (KSA) for parameter tuning unto Long Short Term Memory (LSTM) Network for feature selection in classification of high-dimensional bioinformatics datasets. In 2018 Federated Conference on Computer Science and Information Systems (FedCSIS) (pp. 15-20), http://dx.doi.org/10.15439/2018F52
- 20. Lindén, J., Forsström, S., Zhang, T. 2018. Evaluating combinations of classification algorithms and paragraph vectors for news article classification. In 2018 Federated Conference on Computer Science and Information Systems (FedCSIS) (pp. 489-495), http://dx.doi.org/10.15439/2018F110
- 21. Hochreiter, S., Schmidhuber, J. 1997. Long Short-term Memory. Neural computation. 9. 1735-80 (1997), http://dx.doi.org/10.1162/neco.1997.9.8.1735
- 22. Cho, K., Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, http://dx.doi.org/10.3115/v1/D14-1179
- 23. do Carmo LC., Médicis da Silveira JA., Marone SA., D’Ottaviano FG., Zagati LL., Dias von Söhsten Lins EM. 2018. Audiological study of an elderly Brazilian population. Braz J Otorhinolaryngol;74(3):342-9, http://dx.doi.org/10.1016/s1808-8694(15)30566-8
- 24. Walker, JJ., Cleveland, LM., Davis, JL., Seales, JS. 2013. Audiometry screening and interpretation. Am Fam Physician.;87(1):41-7
Uwagi
1. Track 2: 1st Workshop on Artificial Intelligence for Next-Generation Diagnostic Imaging
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-080bb8ca-c5b5-4b30-ab5c-8ca44f84ddf1