Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 2 | 135--139
Tytuł artykułu

An efficient fuel cell maximum power point tracker based on an adaptive neural fuzzy inference system

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Wydajny moduł śledzenia maksymalnego punktu mocy ogniwa paliwowego oparty na adaptacyjnym systemie wnioskowania neuronowego fuzzy
Języki publikacji
EN
Abstrakty
EN
In this article, we develop a Maximum Power Point Tracker (MPPT) for a fuel cell system based on an Adaptive Neural Fuzzy Inference System (ANFIS). The system considered consists of a Proton Exchange Membrane fuel cell (PEMFC) connected to a resistive load via a boost converter, an ANFIS giving the reference signals (the voltage and the current values of the maximum power point whatever the operating conditions of the fuel cell), and a PI (Proportional integrator) controller with a Pulse Width Modulation (PWM) signal generator to tuning the duty cycle of the DC-DC boost converter. The ANFIS training database uses samples calculated using a validate fuel cell electrochemical model. The simulation results obtained using Matlab-Simulink package demonstrate the effectiveness of the proposed MPPT compared to conventional MPPT techniques in terms of static and dynamic performance.
PL
W tym artykule opracowujemy śledzenie punktu maksymalnej mocy (MPPT) dla systemu ogniw paliwowych opartego na Adaptive Neural Fuzzy Inference System (ANFIS). Rozważany system składa się z ogniwa paliwowego z membraną do wymiany protonów (PEMFC) połączonego z obciążeniem rezystancyjnym poprzez konwerter doładowania, ANFIS dający sygnały odniesienia (napięcie i wartości prądu maksymalnego punktu mocy, niezależnie od warunków pracy ogniwa paliwowego ) oraz sterownik PI (proporcjonalny integrator) z generatorem sygnału z modulacją szerokości impulsu (PWM) do dostrajania cyklu pracy przetwornicy podwyższającej DC-DC. Baza danych szkoleniowych ANFIS wykorzystuje próbki obliczone przy użyciu walidacyjnego modelu elektrochemicznego ogniw paliwowych. Wyniki symulacji uzyskane przy użyciu pakietu MATLAB-Simulink pokazują skuteczność proponowanego MPPT w porównaniu z konwencjonalnymi technikami MPPT pod względem wydajności statycznej i dynamicznej.
Wydawca

Rocznik
Strony
135--139
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Faculty of Science and Technology, University Mustapha Stambouli of Mascara, Algeria, hebalimourad@yahoo.fr
Bibliografia
  • [1] Johansson T. B., Patwardhan A., Nakicenovic N., Gomez Echeverri L., Global energy assessment: Toward a sustainable future, Cambridge University Press, 2012
  • [2] Veziroglu T. N., Sahin S., 21st Century’s energy: Hydrogenenergy system, Energy Conversion and Management, 49 (2008), No. 7, 1820 –1831
  • [3] Höök M., Tang X., Depletion of fossil fuels and anthropogenic climate change - A review, Energy Policy, 52 (2013), 979-809
  • [4] Casteleiro-Roca J. L., Barragán J. K., Manzano S. F, Calvo Rolle J. L., Andújar J. M., Fuel Cell Hybrid Model for Predicting Hydrogen Inflow through Energy Demand, Electronics, 8 (2011), No. 11, 1325
  • [5] Mekhilef S., Saidur R., Safari A., Comparative study of different fuel cell technologies, Renewable and Sustainable Energy Reviews, 16 (2012), No. 1, 981-989
  • [6] Amirinejad M., Rowshanzamir S., Eikani M. H., Effects of operating parameters on performance of a proton exchange membrane fuel cell, Journal of Power Sources, 161 (2006), No. 2, 872-875
  • [7] Wang M. H., Huang M. L., Jiang W. J., Liou K. J., Maximum power point tracking control method for proton exchange membrane fuel cell, IET Renewable Power Generation, 10 (2016), No. 7, 908-915
  • [8] Bankupalli P. T., Ghosh S., Kumar L., Samanta S., Jain S.,Operational Adaptability of PEM Fuel Cell for Optimal Voltage Regulation with Maximum Power Extraction, IEEE Transactions on Energy Conversion, 35 (2020), No. 1, 203-212
  • [9] Harrag A., Messalti S., Variable Step Size IC MPPT Controller for PEMFC Power System Improving Static and Dynamic Performances, Fuel Cells, 17 (2017), No. 6, 816-824
  • [10] Ahmadi S., Abdi S., Kakavand M., Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller, International Journal of Hydrogen Energy, 42 (2017), No. 32, 20430-20443
  • [11] Zhi-dan Z., Hai-bo H., Xin-jian Z., Guang-yi C., Yuan R.,Adaptive maximum power point tracking control of fuel cell power plants, Journal of Power Sources, 176 (2008), No. 21, 259-269
  • [12] Khan M. J., Mathew L., Comparative Study of Maximum Power Point Tracking Techniques for Hybrid Renewable Energy System, International Journal of Electronics, 106 (2019), No. 8, 1216-1228
  • [13] Subudhi B., Pradhan R., A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems, IEEE Transactions on Sustainable Energy, 4 (2013), No. 1, 89-98
  • [14] Sera D., Mathe L., Kerekes T., Spataru S., Teodorescu R., On the Perturb-and-Observe and Incremental Conductance MPPT methods for PV systems, IEEE Journal of Photovoltaics, 3 (2013), No. 3, 1070-1078
  • [15] Reddy K. J., Sudhakar N., High Voltage Gain Interleaved Boost Converter With Neural Network Based MPPT Controller for Fuel Cell Based Electric Vehicle Applications, IEEE Access, 6 (2018), 3899-3908
  • [16] Khan M. J., Artificial Intelligence Based Maximum Power Point Tracking Controller for Fuel Cell System, European Journal of Electrical Engineering, 21 (2019), No. 3, 297-302
  • [17] Benchouia N. E., Derghal A., Mahmah B., Madi B., Khochemane L., Aoul E. H., An adaptive fuzzy logic controller (AFLC) for PEMFC fuel cell, International Journal of Hydrogen Energy, 40 (2015), No. 39, 13806–13819
  • [18] Bicer Y., Dincer I., Aydin M., Maximizing performance of fuel cell using artificial neural network approach for smart grid applications, Energy, 98 (2022), No. 1, 1205–1217
  • [19] Foughali Y, Mankour M., Sekour M., Azzeddine H. A., Larbaoui A., Chaouch D., Berka M., A RBF artificial neural network to predict a fuel cell maximum power point, Przegląd Elektrotechniczny, 98 (2022), nr 7, 100-104
  • [20] Hajizadeh A, Robust Power Control of Microgrid based on Hybrid Renewable Power Generation Systems, Iranian Journal of Electrical and Electronic Engineering, 9 (2013), No. 1, 44-57
  • [21] Corêa J. M.,. Farret F. A, Canha L. N., Simões M. G., An Electrochemical-Based Fuel Cell Model Suitable for Electrical Engineering Automation Approach, IEEE Transactions on Industrial Electronics , 51 (2004), No. 5, 1103-1112
  • [22] Mann R. F., Amphlett J. C., Hooper M. A. I.,. Jensen H. M, Peppley B. A., Roberge P. R., Development and application of a generalised steady-state electrochemical model for a PEM fuel cell, Journal of Power Sources, 86 (2000), No. 1–2, 173-180
  • [23] C. Wang, Nehrir M. H, Shaw S. R., Dynamic models and model validation for PEM fuel cells using electrical circuits, IEEE Transactions on Energy Conversion, 20 (2005), No. 2, 442-451
  • [24] Jang J. S. R, ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics, 23 (1993), No. 3, 665-685
  • [25] Meharrar A., Tioursi M., Hatti M., Boudghène Stambouli A., A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system, Expert Systems with Applications, 38 (2011), No. 6, 7659-7664
  • [26] Karaboga D., Kaya E., Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey, Artificial Intelligence Review, 52 (2019), 2263-2293
  • [27] Walia N., Kumar S., Singh H., A Survey on Applications ofAdaptive Neuro Fuzzy Inference System, International Journal of Hybrid Information Technology, 8 (2015), No. 11, 343-350
  • [28] Menesy A. S., Sultan H. M., Korashy A., Banakhr F. A., Ashmawy M. G., Kamel S., Effective Parameter Extraction of Different Polymer Electrolyte Membrane Fuel Cell Stack Models Using a Modified Artificial Ecosystem Optimization Algorithm, IEEE Access, 8 (2020), 31892-31909
  • [29] Cao Y., Li Y., Zhang G., Jermsittiparsert K., Razmjooy N., Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm, Energy Reports, 5 (2019), 1616-1625
  • [30] N. Bizon, Energy harvesting from the FC stack that operates using the MPP tracking based on modified extremum seeking control, Applied Energy, 104 (2013), 326-336
  • [31] Saravanan S, Ramesh Babu N., Maximum power point tracking algorithms for photovoltaic system – A review, Renewable and Sustainable Energy Reviews, 57 (2016), 192-204
  • [32] Elgendy A.M., Zahawi B., Atkinson D.J, Assessment of Perturb and Observe MPPT Algorithm Implementation Techniques for PV Pumping Applications, IEEE Transactions on Sustainable Energy, 3 (2012), No. 1, 21-33
  • [33] Zhi-dan Z., hai-bo H., Xin-jian Z., Guang-yi C., Yuan R..Adaptive maximum power point tracking control of fuel cell power plants, Journal of Power Sources, 176 (2008), 259-269
  • [34] Hebib A., Allaoui T., Chaker A., Belabbas B., Denai M., AComparative Study of Classical and Advanced MPPT Control Algorithms for Photovoltaic Systems, Przegląd Elektrotechniczny, 96 (2020), nr 11, 65-69
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-08059684-dd51-45b2-ac8c-98d7d2a1a537
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.