Warianty tytułu
Języki publikacji
Abstrakty
Seat upholstery fabrics for vehicles are crucial products as technical textiles in motor vehicles make up approximately 15% of the total manufactured technical textiles worldwide and more than 50% of the production belongs to the woven fabrics because of their appropriate properties for this application. The current work presents the comfort-related properties of the woven fabrics designed to be used in automotive seat upholstery. For this aim, double-layered woven fabrics were produced with four different process variables such as bottom layer pattern, number of interlacing warps in a unit report, number of interlacing picks per top warp, and number of weft skips by using Taguchi experimental design. Besides handle related properties, such as circular bending rigidity, surface roughness properties, and thermo physiological comfort related properties that include air permeability, thermal resistance, and moisture management properties were measured and analyzed based on Taguchi experimental analysis.
Czasopismo
Rocznik
Tom
Strony
272--281
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
- Namık Kemal University, Department of Textile Engineering, Tekirdağ, Turkey
autor
- EmelAkın Vocational High School, Ege University, Izmir, Turkey, goncaozcelikkayseri@gmail.com
autor
- Martur R&D Manager, Bursa, Turkey
Bibliografia
- [1] Schwarz, I. G., Kovačević, S., Kos, I. (2015). Physical mechanical properties of automotive textile materials. Journal of Industrial Textiles, 45(3), 323–337
- [2] Fung, W., Hardcastle, M. (2001). Textiles in automotive engineering. Woodhead Publishing Ltd., (Cambridge, England).
- [3] Shishoo, R. (2008). Textile advances in the automotive industry. Woodhead Publishing Ltd. (Cambridge, England).
- [4] Kovačević, S., Domjanić, J., Brnada, S., Schwarz, I. (2017). Textile composites for seat upholstery, textiles for advanced applications. Intechopen Publishing, pp. 191–209. doi: 10.5772/intechopen.68984.
- [5] Mukhopadhyay, S. K., Partridge, J. F. (1999). Automotive textiles. Textile Progress, 29(1–2), doi:10.1080/00405169908688876, 1–125.
- [6] Singha, K. (2012). Strategies for in automobile: strategies for using automotive textiles-manufacturing techniques and applications. Journal of Safety Engineering, 1(1), 7–16.
- [7] Yao, G. (2015). Development of the automobile seat fabric by polyester filament. In: 5th International Conference on Advanced Engineering Materials and Technology (AEMT), 583–586
- [8] Jerkovic, I., Pallares, J. M, Capdevila, X. (2010). Study of the abrasion resistance in the upholstery of automobile seats. Autex Research Journal, 10(1).
- [9] Havelka, A., Glombikova, V., Komarkova, P., Chotebor, M. (2017). The study of fabric performance for car seats. Tekstilec, 60(3), 235–242.
- [10] El-Homossani, M., Gawad, M. A., Khalifa, T. F., Hafez, H. S. (2015). Achieving optimum thermal comfort properties for automotive seat fabrics. International Journal of Advance Research in Science and Engineering, 4(11), 424–435.
- [11] Simiona, M., Socaciua, L., Unguresana, P. (2016). Factors which influence the thermal comfort inside of vehicles. Energy Procedia, 85, 472–480.
- [12] Yahya, M. F. (2002). Abrasion and tensile relationships of automotive car seat fabrics (Master's thesis). School of Textiles and Design. The University of Leeds.
- [13] Pamuk, G., Çeken, F. (2008). Comparative study of the abrasion resistance of automobile seat covers. Fibres & Textiles in Eastern Europe, 16(4), 57–61.
- [14] Ujević, D., Kovačević, S., Wadsworth, L. C., Schwarz, I., Šajatović, B. B. (2009). Analysis of artificial leather with textile fabric on the backside. Journal of Textile and Apparel, Technology and Management, 6(2), 1–9.
- [15] Cengiz, T. G.,, Babalık, F. C. (2009). The effects of ramie blended car seat covers on thermal comfort during road trials. International Journal of Industrial Ergonomics, 39, 287–294. doi:10.1016/j.ergon.2008.12.002.
- [16] Jerkovic, I., Pallarés, J. M., Ardanuy, M., Capdevila, X. (2013). Abrasive elements and abrasion resistance tests for car. Journal of Engineered Fibers and Fabrics, 8, 35–41.
- [17] Mecit, D., Berber, R. O., Boyacı, B. (2015). A study on the application of recycled fabrics as automotive seat upholstery. Industria Textila, 5, 278–282.
- [18] Koc, S. K., Mecit, D., Boyaci, B., Örnek, M., Hockenberger, A. (2016). Effects of filament crosssection on the performance of automotive up holstery fabrics. Journal of Industrial Textiles, 46(3), 756–770. doi: 10.1177/1528083715598652.
- [19] Avcu, Ö., Gürkan Ünal, P. (2018). Mechanical properties of doublelayered woven fabrics used in car seat upholstery. The Journal of the Textile Institute, 109(11), 1409–1417. doi: 10.1080/00405000.2018.1423901.
- [20] El Mogahzy, Y. E. (2009). Engineering textiles integrating the design and manufacture of textile products. Woodhead Publishing (Cambridge, England).
- [21] ASTM D 4032, Standard Test Method for Stiffness of Fabric by the Circular Bend Procedure.
- [22] ISO 4287, Geometrical Product Specifications (GPS) - Surface texture: Profile method – Terms, definitions and surface texture parameters
- [23] MitutoyoSurftest J-310 Manual, 2010.
- [24] Mooneghi, S. A., Varkiyani, S. M. H. (2014). Surface roughness evaluation of textile fabrics: A literature review. Journal of Engineered Fibers and Fabrics, 9(2), 1–18.
- [25] Mooneghi. S. A., Varkiyani. S. M. H. (2015). Study on fabric surface roughness and its influence on worsted fabric abrasion resistance. Journal of Engineered Fibers and Fabrics, 10(4), 79–86.
- [26] ISO 9237, Textiles - Determination of the permeability of fabrics to air.
- [27] ISO 11092, Textiles - Physiological effects - Measurement of thermal and water-vapour resistance under steady-state conditions (sweating guarded-hotplate test).
- [28] AATCC Test Method (TM) 195, Liquid Moisture Management Properties of Textile Fabrics.
- [29] Hu, J., Li, Y., Yeung, K., W. Wong, A. S. W., Xu, W. (2005). Moisture management tester: A method to characterize fabric liquid moisture management properties. Textile Research Journal, 75(1), 57–62.
- [30] Li, Y., Xu, W., Yeung, K. W. (2000), Moisture Management of Textiles, U.S. patent 6,499,338 B2
- [31] Moisture Management Tester Operation Manual, 2012.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-07d00f73-f8ca-4210-86de-9a1a38e6f618