Warianty tytułu
Języki publikacji
Abstrakty
Temperature and precipitation are significant environmental variables that can lead to catastrophic climatic disasters. The intensity of precipitation increases with increasing temperature under humid conditions. As a result, investigating the trend and relationship between precipitation and temperature is important in a wide range of industries such as trade, agriculture, and ecological analysis. Quantile regression techniques were used in this study to determine the effect of temperature variables on different amounts of precipitation during a 36-year duration (1984-2019) in Mazandaran Province of Iran. According to the findings, heavy rainfall increased significantly in February and April while decreasing in May, June, and September. All minimum and maximum temperature measurements, however, increased significantly. Moreover, the positive and negative effects of temperature variables were higher in the upper quantiles of precipitation, so the most negative effect of the minimum temperature were identified in the northwestern regions and in the warm and cold months of the year, but the most positive effect were detected in the north. In contrast, it was revealed that the north and northwest regions, respectively, were most negatively impacted by maximum temperature and most positively impacted by heavy rainfall. Finally, in a long period, high temperatures have not shown a positive effect on precipitation, and it is different according to spatial and temporal changes.
Czasopismo
Rocznik
Tom
Strony
1127--1142
Opis fizyczny
Bibliogr. 96 poz.
Twórcy
autor
- Department of Watershed Management, Sari Agricultural Sciences and Natural Resources University, Sari, Iran, K.solaimani@sanru.ac.ir
- Department of Water Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran, rbararkhan@gmail.com
Bibliografia
- 1. Abdi K, Kamyabi S (2021) An investigation into the role of urban green space vegetation on the temperature changes trend of the urban environments area (Case study: Sari city). J Env Sci Tech 23(2):135-146 (In Persian)
- 2. Adnan S, Ullah K, Ahmed R (2020) Variability in meteorological parameters and their impact on evapotranspiration in a humid zone of Pakistan. J Meteorol Appl 27(2):1-10
- 3. Alhaji UU, Yusuf AS, Edet CO, Oche CO, Agbo EP (2018) Trend analysis of temperature in Gombe state using Mann Kendall trend test. J Sci Res Rep 20(1):1-9. https://doi.org/10.9734/JSRR/2018/ 42029
- 4. Ali H, Fowler HJ, Mishra V (2018) Global observational evidence of strong linkage between dew point temperature and precipitation extremes. Geophys Res Lett 45(22):12320-12330. https://doi.org/ 10.1029/2018GL080557
- 5. Amini M, Ghadami M, Fathian F, Modarres R (2020) Teleconnections between oceanic-atmospheric indices and drought over Iran using quantile regressions. Hydrol Sci J 65(13):2286-2295. https://doi. org/10.1080/02626667.2020.1802029
- 6. Amirrezaeieh AR, Porhemmat J, Ahmadi F (2017) Investigation of precipitation and temperature trend across the north west of iran in recent half of the century. Iranain J Irrig Drain 10(6):797-809
- 7. Baig MRI, Naikoo MW, Ansari AH, Ahmad S, Rahman A (2022) Spatio-temporal analysis of precipitation pattern and trend using standardized precipitation index and Mann-Kendall test in coastal Andhra Pradesh. Model Earth Syst Environ 8(2):2733-2752. https://doi.org/10.1007/s40808-021-01262-w
- 8. Bannayan M, Asadi S, Nouri M, Yaghoubi F (2020) Time trend analysis of some agroclimatic variables during the last half century over Iran. Theor Appl Climatol 140:839-857. https://doi.org/10.1007/ s00704-020-03105-7
- 9. Bararkhanpour Ahmadi S, Gholami Sefidkouhi MA, Khoshravesh M (2023) Investigating the effect of meteorological parameters on heavy rainfall events in different climates of iran using quantile regression. J Soil Water Conserv. https://doi.org/10.3049/wsrcj. 2022.68792.11317
- 10. Barbosa SM (2008) Quantile trends in Baltic sea level. Geophys Res Lett 35:L22704. https://doi.org/10.1029/2008GL035182
- 11. Benoit DF, Al-Hamzawi R, Yu K, den Poel DV (2022) bayesQR: Bayesian quantile regression. R package version 2.3. http://cran.r-project.org/web/packages/bayesQR/bayesQR.pdf
- 12. Boyaj A, Dasari HP, Hoteit I, Ashok K (2020) Increasing heavy rainfall events in south India due to changing land use and land cover. Q J R Meteorol Soc 146(732):3064-3085. https://doi.org/10.1002/ qj.3826
- 13. Castillo-Mateo J, Asín J, Cebrián AC, Mateo-Lázaro J, Abaurrea J (2023) Bayesian variable selection in generalized extreme value regression: modeling annual maximum temperature. Mathematics 11(3):759. https://doi.org/10.3390/math11030759
- 14. Chen W, Cui H, Ge Q (2021) The spatial and seasonal dependency of daily precipitation extremes on the temperature in China from 1957 to 2017. Int J Climatol 42(3):1560-1575. https://doi.org/ 10.1002/joc.7320
- 15. Chotimah H, Fitriani R, Andriyana Y (2022) Modeling of climate change vulnerability levels in Indonesia: Smoothing splines quantile regression. J Math Comput Sci 12:1-14. https://doi.org/10. 28919/jmcs/7172
- 16. Chukwudum QC, Nadarajah S (2022) Bivariate extreme value analysis of rainfall and temperature in Nigeria. Environ Model Assess 27(2):343-362. https://doi.org/10.1007/s10666-021-09781-7
- 17. Costa V, Fernandes W (2017) Bayesian estimation of extreme flood quantiles using a rainfall-runoff model and a stochastic daily rainfall generator. J Hydrol 554:137-154. https://doi.org/10.1016/j. jhydrol.2017.09.003
- 18. Dai A, Rasmussen RM, Liu C, Ikeda K, Prein AF (2020) A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim Dyn 55(1):343-368. https://doi.org/10.1007/s00382-017-3787-6
- 19. Dey P, Mujumdar PP (2019) On the uniformity of rainfall distribution over India. J Hydrol 578:124017. https://doi.org/10.1016/j.jhydr ol.2019.124017
- 20. Dhakal N, Tharu B (2018) Spatio-temporal trends in daily precipitation extremes and their connection with North Atlantic tropical cyclones for the southeastern United States. Int J Climatol 38(10):3822-3831. https://doi.org/10.1002/joc.5535
- 21. Diress SA, Bedada TB (2021) Precipitation and Temperature trend analysis by Mann Kendall test: the case of Addis Ababa methodological station, Addis Ababa, Ethiopia. AJLP&GS 4(4):517-526. https://doi.org/10.4834/IMIST.PRSM/ajlp-gs.v4i4.24086
- 22. Do Nascimento FF, Bourguignon M (2020) Bayesian time-varying quantile regression to extremes. Environmetrics 31(2):e2596. https://doi.org/10.1002/env.2596
- 23. Do Nascimento FF, Bourguignon M (2022) Bayesian time-varying quantile regression on exceedance. Stat 56(6):1207-1224. https:// doi.org/10.1080/02331888.2022.2146691
- 24. Duy VV, Ouillon S, Minh HN (2022) Sea surface temperature trend analysis by Mann-Kendall test and sen’s slope estimator: a study of the Hai Phong coastal area (Vietnam) for the period 19952020. Vietnam J Earth Sci 44(1):73-91. https://doi.org/10.15625/ 2615-9783/16874
- 25. El Kasri J, Lahmili A, Soussi H, Jaouda I, Bentaher M (2021) Trend analysis of meteorological variables: rainfall and temperature. Civ Eng J 7(11):1868-1879. https://doi.org/10.2899/cej-2021-03091 765
- 26. Farsadnia F, Rostami Kamrod M, Moghadam Nia A (2012) Rainfall trend analysis of mazandaran province using regional Mann-Kendall Test. Iran Water Resour Res 8(2):60-70
- 27. Folke C, Polasky S, Rockström J, Galaz V, Westley F, Lamont M, Walker BH (2021) Our future in the Anthropocene biosphere. Ambio 50(4):834-869. https://doi.org/10.1007/ s13280-021-01544-8
- 28. Fowler HJ, Lenderink G, Prein AF, Westra S, Allan RP, Ban N, Bar-bero R, Berg P, Blenkinsop S, Do HX, Guerreiro S, Haerter JO, Kendon EJ, Lewis E, Schaer C, Sharma A, Villarini G, Wasko C, Zhang X (2021) Anthropogenic intensification of short-duration rainfall extremes. Nat Rev Earth Environ 2(2):107-122. https:// doi.org/10.1038/s43017-020-00128-6
- 29. Gadedjisso-Tossou A, Adjegan KI, Kablan AKM (2021) Rainfall and temperature trend analysis by Mann-Kendall test and significance for rainfed cereal yields in Northern Togo. Sci 3(1):17. https://doi. org/10.3390/sci3010017
- 30. Gao M, Zheng H (2018) Nonstationary extreme value analysis of temperature extremes in China. Stoch Environ Res Risk Assess 32(5):1299-1315. https://doi.org/10.1007/s00477-017-1482-0
- 31. Ghausi SA, Ghosh S (2020) Diametrically opposite scaling of extreme precipitation and streamflow to temperature in South and Central Asia. Geophys Res Lett 47(17):e2020GL089386. https://doi.org/ 10.1029/2020GL089386
- 32. Huang X, Swain DL (2022) Climate change is increasing the risk of a California megaflood. Sci Adv 8(32):eabq0995. https://doi. org/10.1126/sciadv.abq0995
- 33. Jamali M, Gohari A, Motamedi A, Haghighi AT (2022) Spatiotemporal Changes in Air Temperature and Precipitation Extremes over Iran. Water 14(21):3465. https://doi.org/10.3390/w14213465
- 34. Javadinejad S, Dara R, Jafary F (2020) Potential impact of climate change on temperature and humidity related human health effects during extreme condition. Saf Extreme Environ 2(2):189-195. https://doi.org/10.1007/s42797-020-00021-x
- 35. Jaya IGNM, Ruchjana BN, Abdullah AS (2020) Toharudin TA (2020) Relationship between temperature and precipitation over the contiguous Bandung city. Indonesia. Commun Math Biol Neurosci 63:1-13. https://doi.org/10.28919/cmbn/4868
- 36. Kalisa W, Igbawua T, Ujoh F et al (2021) Spatio-temporal variability of dry and wet conditions over East Africa from 1982 to 2015 using quantile regression model. Nat Hazards 106:2047-2076. https:// doi.org/10.1007/s11069-021-04530-1
- 37. Kalisa W, Zhang J, Igbawua T, Ujoh F, Ebohon OJ, Namugize JN, Yao F (2020) Spatio-temporal analysis of drought and return periods over the East African region using Standardized Precipitation Index from 1920 to 2016. Agric Water Manag 237:106195. https://doi.org/10.1016/j.agwat.2020.106195
- 38. Kamyabi S, Abdi K (2020) Detection and analysis of the trend of climate change (precipitation and temperature) within the boundaries of Sari. J Environ Sci Technol 22(7):165-179
- 39. Kendall MG (1975) Rank auto-correlation methods. Charles Griffin, London
- 40. Koenker R (2005) Quantile regression, 1st edn. Cambridge University Press, New York, pp 1-25
- 41. Koenker R, Bassett G (1978) Regression quantils econometrica. J Econom Soc 46:33-50. https://doi.org/10.2307/1913643
- 42. Koenker R, D’Orey V (1987) Algorithm AS 229: computing regression quantiles. J Roy Stat Soc 36:383-393. https://doi.org/10. 2307/2347802
- 43. Koenker R (2006) Quantile regression in R: a vignette. [Available online at http://www.econ.uiuc.edu/~roger/research/rq/vig.pdf.]
- 44. Koenker R (2018) Quantreg: quantile regression and related methods. version 5.54. R package. https://cran.r-project.org/web/packages/ quantreg/quantreg.pdf.
- 45. Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81(11):1565-1578. https://doi.org/10.1080/00949655.2010.496117
- 46. Lausier AM, Jain S (2018) Overlooked trends in observed global annual precipitation reveal underestimated risks. Sci Rep 8:16746. https://doi.org/10.1038/s41598-018-34993-5
- 47. Leiserowitz A, Maibach E, Rosenthal S, Kotcher J, Bergquist P, Gustafson A, Ballew M, Goldberg M (2020) Politics & global warming, November 2019. Yale University and George Mason University. Yale Program on Climate Change Communication, New Haven, CT
- 48. Li C, Zwiers F, Zhang X, Chen G, Lu J, Li G, Norris J, Tan Y, Liu M (2019) Larger increases in more extreme local precipitation events as climate warms. Geophys Res Lett 46(12):6885-6891. https:// doi.org/10.1029/2019GL082908
- 49. Maestri V (2013) Imputed rent and distributional effect of housing-related policies in Estonia, Italy and the United Kingdom. Balt J Econ 13:37-60
- 50. Magan B, Kim S, Wasko C, Barbero R, Moron V, Nathan R, Sharma A (2020) Impact of atmospheric circulation on the rainfall-temperature relationship in Australia. Environ Res Lett 15(9):094098
- 51. Mahmood N, Arshad M, Kächele H, Ullah A, Müller K (2020) Economic efficiency of rainfed wheat farmers under changing climate: evidence from Pakistan. Environ Sci Pollut Res 27(27):34453-34467. https://doi.org/10.1007/s11356-020-09673-5
- 52. Mann HB (1945) Nonparametric tests against trend. Econometrica J Econom Soc 13:245-259. https://doi.org/10.2307/1907187
- 53. Marengo JA, Alves LM, Ambrizzi T, Young A, Barreto NJ, Ramos AM (2020) Trends in extreme rainfall and hydrogeometeorological disasters in the Metropolitan Area of Säo Paulo: a review. Ann N Y Acad Sci 1472(1):5-20. https://doi.org/10.1111/nyas.14307
- 54. McKinnon KA, Poppick A (2020) Estimating changes in the observed relationship between humidity and temperature using noncrossing quantile smoothing splines. J Agric Biol Environ Stat 25:292-314. https://doi.org/10.1007/s13253-020-00393-4
- 55. Meng Q, Xiong C, Mourshed M, Wu M, Ren X, Wang W, Song H (2020) Change-point multivariable quantile regression to explore effect of weather variables on building energy consumption and estimate base temperature range. Sustain Cities Soc 53:101900. https://doi.org/10.1016/j.scs.2019.101900
- 56. Minaei M, Irannezhad M (2018) Spatio-temporal trend analysis of precipitation, temperature, and river discharge in the northeast of Iran in recent decades. Theor Appl Climatol 131(1):167-179. https:// doi.org/10.1007/s00704-016-1963-y
- 57. Modabber-Azizi S, Salarijazi M, Ghorbani K (2022) Estimation of seasonal and annual river flow volume based on temperature and rainfall by multiple linear and Bayesian quantile regressions. Ido-jaras 126(4):567-582. https://doi.Org/10.2897/idojaras.2022.4.6
- 58. Mohammadpourzeidi A, Alijani B, Saligheh M, Gerami M (2019) Spatial analysis of precipitation in Mazandaran province. Res Geogr Sci 19(52):1-20. https://doi.org/10.29252/jgs.19.52.1
- 59. Mohsenipour M, Shahid S, Ziarh GF, Yaseen ZM (2020) Changes in monsoon rainfall distribution of Bangladesh using quantile regression model. Theor Appl Climatol 142(3):1329-1342. https://doi. org/10.1007/s00704-020-03387-x
- 60. Najibi N, Mukhopadhyay S, Steinschneider S (2022) Precipitation scaling with temperature in the northeast US: variations by weather regime, season, and precipitation intensity. Geophys Res Lett 49(8):e2021GL097100. https://doi.org/10.1029/2021GL097100
- 61. Overpeck JT, Udall B (2020) Climate change and the aridification of North America. Proc Natl Acad Sci 117(22):11856-11858. https://doi.org/10.1073/pnas.2006323117
- 62. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al. (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC. (p. 151).
- 63. Passow C, Donner RV (2020) Regression-based distribution mapping for bias correction of climate model outputs using linear quantile regression. Stoch Environ Res Risk Assess 34(1):87-102. https:// doi.org/10.1007/s00477-019-01750-7
- 64. Pérez Bello A, Mailhot A, Paquin D (2021) The response of daily and sub-daily extreme precipitations to changes in surface and dew-point temperatures. J Geophys Res Atmos 126(16):e2021JD034972. https://doi.org/10.1029/2021JD034972
- 65. Praveen B, Sharma P (2020) Climate change and its impacts on Indian agriculture: an econometric analysis. J Public Aff 20(1):e1972. https://doi.org/10.1002/pa.1972
- 66. Pumo D, Noto LV (2021) Exploring the linkage between dew point temperature and precipitation extremes: a multi-time-scale analysis on a semi-arid Mediterranean region. Atmos Res 254:105508. https://doi.org/10.1016/j.atmosres.2021.105508
- 67. Ramsey AF (2020) Probability distributions of crop yields: a bayesian spatial quantile regression approach. Am J Agric Econ 102(1):220-239. https://doi.org/10.1093/ajae/aaz029
- 68. Sa’adi Z, Shahid S, Ismail T, Chung ES, Wang XJ (2017) Distributional changes in rainfall and river flow in Sarawak, Malaysia. Asia Pac J Atmos Sci 53(4):489-500. https://doi.org/10.1007/ s13143-017-0051-2
- 69. Sadeghi H, Mohammadi H, Shamsipour A, Bazgeer S, Karimi Ahmadabad M, Soufizadeh S (2019) Projection of changes in precipitation index of the southern coast of the caspian sea in order to hazards reduction in the periods of 2021-2050. Environ Manage Hazards 6(4):395-421. https://doi.org/10.2205/jhsci. 2020.297979.540
- 70. Salehi S, Dehghani M, Mortazavi SM, Singh VP (2020) Trend analysis and change point detection of seasonal and annual precipitation in Iran. Int J Climatol 40(1):308-323. https://doi.org/10.1002/joc. 6211
- 71. Salman SA, Shahid S, Ismail T, Ahmed K, Wang XJ (2018) Selection of climate models for projection of spatiotemporal changes in temperature of Iraq with uncertainties. Atmos Res 213:509-522. https://doi.org/10.1016/j.atmosres.2018.07.008
- 72. Sein ZMM, Zhi X, Ullah I, Azam K, Ngoma H, Saleem F, Xing Y, Lyakaremye V, Syed S, Hina S, Nkunzimana A (2022) Recent variability of sub-seasonal monsoon precipitation and its potential drivers in Myanmar using in-situ observation during 1981-2020. Int J Climatol 42(6):3341-3359. https://doi.org/10.1002/joc.7419
- 73. Singh H, Pirani FJ, Najafi MR (2020) Characterizing the temperature and precipitation covariability over Canada. Theor Appl Climatol 139(3):1543-1558. https://doi.org/10.1007/s00704-019-03062-w
- 74. Solaimani K (2022) Seasonal relationship between climatic variables and evaporation based on Bayesian quantile regression method in southern Caspian region. Arab J Geosci 15(10):1-17. https://doi. org/10.1007/s12517-022-10263-7
- 75. Solaimani K, Habaibnejad M, Pirnia A (2021) Temporal trends of hydro-climatic variables and their relevance in water resource management. Int J Sediment Res 36(1):63-75. https://doi.org/10. 1016/j.ijsrc.2020.04.001
- 76. Stocker T, Plattner GK, Dahe Q (2014) IPCC climate change 2013: the physical science basis-findings and lessons learned. In EGU general assembly conference abstracts (p. 17003).
- 77. Team CW, Pachauri RK, Reisinger, A (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Ipcc, Geneva, Switzerland
- 78. Tabari H (2020) Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep 10(1):1-10. https:// doi.org/10.1038/s41598-020-70816-2
- 79. Tan X, Shao D (2017) Precipitation trends and teleconnections identified using quantile regressions over Xinjiang. China Int J Climatol 37(3):1510-1525. https://doi.org/10.1002/joc.4794
- 80. Tan X, Gan TY, Chen S, Liu B (2018) Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections. J Clim Dyn 52(3-4):2105-2124. https://doi.org/10.1007/ s00382-018-4241-0
- 81. Tharu B, Dhakal N (2020) On the use of Bayesian quantile regression method to explore the historical trends in extreme precipitation and their connections with large-scale climate patterns over the contiguous USA. Theor Appl Climatol 139(3-4):1277-1290. https://doi.org/10.1007/s00704-019-03054-w
- 82. Treppiedi D, Cipolla G, Francipane A, Noto LV (2021) Detecting precipitation trend using a multiscale approach based on quantile regression over a Mediterranean area. Int J Climatol 41:59385955. https://doi.org/10.1002/joc.7161
- 83. Uranchimeg S, Kim JG, Kim JG, Kown HH, Lee SO (2018) A bayesian quantile regression approach for nonstationary frequency analysis of annual maximum sea level in a changing climmate. J Coast Res 58:536-540. https://doi.org/10.2112/SI85-108.1
- 84. Vantas K, Sidiropoulos E, Loukas A (2020) Estimating current and future rainfall erosivity in Greece using regional climate models and spatial quantile regression forests. Water 12(3):687. https:// doi.org/10.3390/w12030687
- 85. Vilerts K (2018) The public-private sector wage gap in Latvia. Balt J Econ 18:25-50. https://doi.org/10.1080/1406099X.2018.1457356
- 86. Visser JB, Wasko C, Sharma A, Nathan R (2020) Resolving inconsistencies in extreme precipitation-temperature sensitivities. Geophys Res Lett 47(18):e2020GL089723. https://doi.org/10.1029/2020G L089723
- 87. Wainwright CM, Finney DL, Kilavi M, Black E, Marsham JH (2021) Extreme rainfall in East Africa, October 2019-January 2020 and context under future climate change. Weather 76(1):26-31. https:// doi.org/10.1002/wea.3824
- 88. Wan JS, Liew EC (2020) Genus-level change in aggressiveness with continuous invasions: a phylogenetically-informed Bayesian quantile regression. Biol Invasions 22(6):1931-1946. https://doi.org/ 10.1007/s10530-020-02229-1
- 89. Wasko C, Nathan R (2019) Influence of changes in rainfall and soil moisture on trends in flooding. J Hydrol 575:432-441. https://doi. org/10.1016/j.jhydrol.2019.05.054
- 90. Wasko C, Lu WT, Mehrotra R (2018) Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia. Environ Res Lett 13(7):074031
- 91. Yong Z, Xiong J, Wang Z, Cheng W, Yang J, Pang Q (2021) Relationship of extreme precipitation, surface air temperature, and dew point temperature across the Tibetan Plateau. Clim Change 165(1):1-22. https://doi.org/10.1007/s10584-021-03076-2
- 92. Yoro KO, Daramola MO (2020) CO2 emission sources, greenhouse gases, and the global warming effect. Adv Carbon Capture. https:// doi.org/10.1016/B978-0-12-819657-1.00001-3
- 93. Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54:437-447. https://doi.org/10.1016/S0167-7152(01)00124-9
- 94. Yu K, Zhang J (2005) A three-parameter asymmetric Laplace distribution and its extension. Commun Stat Theory Methods 34(9-10):1867-1879. https://doi.org/10.1080/03610920500199018
- 95. Zhang S, Gan TY, Bush AB (2020) Variability of arctic sea ice based on quantile regression and the teleconnection with large-scale climate patterns. J Clim 33(10):4009-4025. https://doi.org/10.1175/ JCLI-D-19-0375.1
- 96. Živkov D, Kuzman B, Subić J (2020) What Bayesian quantiles can tell about volatility transmission between the major agricultural futures? Agric Econ 66(5):215-225
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-07c2f71a-66a8-45c5-8d48-1d41b9feece3