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Abstract

In this work, a study focusing on proposing generalization metrics for Deep Reinforce-
ment Learning (DRL) algorithms was performed. The experiments were conducted in
DeepMind Control (DMC) benchmark suite with parameterized environments. The per-
formance of three DRL algorithms in selected ten tasks from the DMC suite has been
analysed with existing generalization gap formalism and the proposed ratio and decibel
metrics. The results were presented with the proposed methods: average transfer metric
and plot for environment normal distribution. These efforts allowed to highlight major
changes in the model’s performance and add more insights about making decisions re-

garding models’ requirements.

Keywords: deep reinforcement learning, optimization, generalization, Sim2Sim transfer,

adaptation

1 Introduction

The field of artificial intelligence (Al) research
dedicated to arbitrary environments, known as rein-
forcement learning (RL), took off in the last decade
thanks to advancements in hardware and software
for training universal approximate models called
deep neural networks. The promise to use such
compute-expensive models is the ability to gener-
alize from training task conditions to new, unseen
cases, which is also known as transfer learning to
Out Of Distribution (OOD) tasks [1]. Such abil-
ity was always a concern in control theory, where
the regulator (control policy) needs a mathematical
model of the dynamics of the control object de-
scribed as:

ey

where x is the system state vector, y is the output of
the system, 7 is time, f describes underlying dynam-
ics of the system and g defines which values can be
observed. The parameters of f and g must also be
identified in terms of changing conditions of a non-
stationary non-linear system. A classical approach
to such problems is to manually model and identify
the system, then linearize the mathematical model
around all considered working points.

In control theory, the assessment of the de-
signed regulator can be performed from multiple
criteria. Very well-established variables to con-
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struct metrics are: control error, robustness to dis-
ruptions, stability, overshoot, and constant offset.
Such a variety of criteria could be proposed due to
the numerical properties of the state space of the
controlled object. Moreover, even if the variable
under control can not be measured directly (e.x. due
to noise) it is possible to create an adequate observer
for that variable [2].

Estimation of “how good” an RL algorithm is
(especially, a subgroup that combines deep neural
networks with RL, called Deep RL (DRL)), can be
performed in an environment that heavily depends
on the sole definition of the reward function. The
reward can be extrinsic, from the environment, or
intrinsic, from the algorithm itself (for instance, as
a bonus reward for exploration of unknown states).
Generally speaking, the measure of mean cumu-
lative reward is the main evaluation metric for a
trained RL algorithm [3, 4]:
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where & is mean cumulative reward function,
which takes as an input T set of N trajectories of
states and actions, Ty is the set of trajectories gen-
erated by trained policy  with corresponding 7,
discrete time horizons, s is state, a is action, ¢ 1S
timestep, and r is an environment reward function,
which takes state and action as input.

Other important parameters in the evaluation of
RL algorithms are: training steps, the type of input
data (i.e. visual observations are harder to process
than already presented state vector), the distribution
of permutations for the training environment, sam-
ple efficiency, the size of the model or the cost of
computation.

Intuitively, it is possible to propose a qualitative
metric through the comparison of a variety of envi-
ronments and distinguish permutations that are ob-
jectively harder than others due to unfortunate cir-
cumstances (e.g. a greater gravity constant or more
objects to avoid). However, defining a quantitative
metric for decision-making assessment is not triv-
ial, and can be seen as a part of defining the environ-
ment’s reward function. Nevertheless, such an ap-
proach to developing a metric was explored in [5].

Another way to tackle the problem of formulat-
ing qualitative metrics for assessing generalization

to unseen environments can be to focus on parame-
terized mean cumulative reward (2) by the environ-
ment parameters. Rephrasing that in a more con-
crete way, such a metric can be defined as a form of
generalization gap in terms of comparing the per-
formance of doing the same task in two different
environments. This problem has been analysed in
[1] and the aim of this work is to further investigate
metrics for assessment of RL agent’s generalization
to unseen environments based on already defined
generalization gap formalism.

The contributions of this work can be summa-
rized as follows:

1. a proposal of metrics for assessing the general-
ization of DRL algorithms to the OOD tasks do-
mains,

2. analysis of generalization of three DRL algo-
rithms in 10 tasks of DeepMind Control Suite,

3. conductance of a proof-of-concept research
showing the comparison of the metrics to the
existing generalization gap formalism with pro-
posed two methods,

4. findings, that the proposed metrics help to high-
light the drop of the performance and add more
insights about the generalization.

Motivation and importance

The ability to transfer a trained model from
one dataset distribution domain to another is cru-
cial for any statistical models, especially for ma-
chine learning (ML) ones. From recommendation
systems, through computer vision to robotic tasks,
each field depends on the reusability of the trained
models in the real world problems. Such transfer
ability, without significant change in performance
and additional learning, is called generalization. If
it is possible to further train the model after a trans-
fer, such a technique is called adaptation [1] or
fine-tuning. Adaptation is often used in supervised
learning computer vision problems, where the addi-
tional training of the model to the new task domain
should be done in as few training samples as possi-
ble (hence the name “’few-shot transfer’). It is worth
mentioning that in literature, “generalization” can
be referred to as “’zero-shot transfer”. In both vari-
ants of the rules for model transferring, a method
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for measuring generalization gap (see definition in
section 2) is essential for performing a quality as-
sessment.

In the RL scenario, acting in the real world is of-
ten much more expensive and harder than running
an agent inside a simulation. The amount of data
needed to train such models to achieve enough ro-
bustness is excessively high. This is a well-known
issue in DRL called sample efficiency [1] which mo-
tives the development of future algorithms towards
maximization usage of already sampled experience.
As an example, please consider the field of au-
tonomous vehicles (AVs). Gathering experience
from real world data (i.e. driving an autonomous
vehicle around multiple sceneries, including city
centres) requires, at least, the supervision of trained
personnel or even permission from the local gov-
ernment. Efficient methods for training models for
AVs in simulation will require some kind of assess-
ment metrics to compare algorithm performance in
the virtual and real worlds.

It is important to remark, that in terms of
model transfer to other task instances, the tasks’
domains can be Independent and Identically Dis-
tributed (IID) or OOD, with respect to the training
domain [1] (see figure 1). An easy, but resource-
consuming approach to deal with OOD generaliza-
tion is to train from scratch (or adapt) an RL agent
to the problematic domain, which relaxes the prob-
lem to IID generalization. A universal method to
achieve OOD generalization in DRL is an ongoing
research subject called generalist agent, which aims
to obtain an Artificial General Intelligence (AGI)
model. Assessing performance on multiple tasks
(for instance, in a meta-learning scenario) is beyond
the scope of this work. Nevertheless, in both distri-
bution cases, it is important to develop techniques
of quality comparison of agent’s performance over
multiple task instances.

In essence, to improve reliability, achieve better
generalization in particular tasks, and cut costs of
gathering data of DRL algorithms, it is important to
think about possible metrics for measuring the per-
formance of trained agents over multiple instances
of task domains.

2 Preliminaries

Reinforcement learning is a category of
machine learning algorithms dedicated to ob-
taining suboptimal solutions of Dynamic Pro-
gramming (DP) problems [4, 3]. Such prob-
lems can be modelled as Markov Decision Prob-
lems (MDPs) M = (so € S, p(-|s,a),R(s),4,5,7),
where sg is the initial state, A4 is the set of pos-
sible actions, S is the set of possible states,
v is discount factor, R(S) is reward function,
p(|s,a) is transition distribution function. In gen-
eral, the underlying states of the MDP can only
be partially observed, thus a Partially Observ-
able Markov Decision Problem (POMDP) Mp =
(s0o € 8,p(:]s,a),R(s),A,8,7,f:s€S—=0€0)
introduces a function f for observing state s as ob-
servation o [1]. Furthermore, to extend this formal-
ism to include MDP parametrization, which shall be
fixed only for episode duration, a Contextual MDP
(CMDP) [1] is defined as follows: an MDP state s
is decomposed into a tuple s = (c,s") € Sc, where
s' € S is the underlying MDP state and ¢ € C is
the context. An arbitrary context ¢ shall be thought
of as an instance of a task from its domain dis-
tribution. Assuming that the context can not be
observed by the agent, CMDP can be easily written
as POMDP by the introduction of an observation
function f.((c,s’)) — f(s") :== o which discards the
information of the context and maps the underlying
state to an observation.

By having different ¢;,4;, context for training
and cyqrger context (see figure 1) for evaluation, the
authors of [1] defined a generalization gap metric:

GenGap(n) =R (TC, %’Ctrain) -R (R, %‘Ctargel) s
3)
where T is trained DRL policy, M, is any CMDP
from context set C and R is the expected return of
the policy. In this work, the generalization gap met-
ric will also be referred to as a difference metric.

RL algorithms can be briefly divided into two
groups: model-based, which uses some kind of in-
formation about the environment, and model-free,
which requires more data to learn the dynamics
of the environment. In this work, we will focus
on model-free algorithms. These kinds of algo-
rithms tackle the DP problem by many approaches,
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for instance (but not limited to): learning state-
action value function (i.e. Q-function) to predict the
highest cumulative reward in whole decision hori-
zon (commonly known as Q-Learning), introduc-
ing latent space from partial state observations (en-
coding), parameterized learned policies (of an ac-
tor) or learning dynamics models (world models).
[6]. In this work three well-tested RL algorithms
have been deployed: Proximal Policy Optimization
(PPO), Soft Actor-Critic (SAC), and Deep Deter-
ministic Policy Gradient (DDPG). They can be con-
sidered as benchmark baselines with the following
specifications:

A
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Figure 1. Relation of different task contexts
(domains) in parameters space. The rectangular
boxes define the contexts, where the points indicate
a corresponding task instance. In this work, the
agents are trained on only one instance inside the
training context (blue point). They are tested
against slightly modified task environments from
the target context (red points). In a more general
case, the target context will not have an
intersection with training one (green area).

Proximal Policy Optimization (PPO) [7] al-
gorithm was designed around two ideas: 1) updat-
ing the policy similarly to the Trust Region Policy
Optimization (TRPO) algorithm, where the policy
weights are changed in a way, that they do not de-
viate too far from the current policy [8], 2) clip-
ping a surrogate objective function that constrains
the policy update to a small region around the cur-
rent policy [7]. For further tinkering with policy
gradient, PPO uses an advantage estimate to scale
the policy gradient updates. The advantage func-
tion A(s,a) = Q(s,a) — V(s) allows calculating the

difference between possible actions g; in state s in
terms of greater future reward. The value func-
tion V(s) is trained separately from the policy net-
work and is used to compute an advantage estimate
A(s,a).

Soft Actor-Critic (SAC) [9] is an off-policy
(i.e. agent learns from experience generated by dif-
ferent policy), actor-critic algorithm which means
that the agent consists of two parts: a policy actor
which learns “how to act” and a critic which learns
some function, typically Q-value, to “critique ac-
tual state” and is based on maximum entropy frame-
work. This framework allows for the optimization
of a trade-off between the expected return and the
entropy of the policy. The definition of policy en-
tropy can be interpreted as a measure of randomness
(or exploration) in the agent’s decision-making pro-
cess. This approach of modelling exploration with
entropy allows an elegant tackling of exploration vs
exploitation problem [9].

Deep Deterministic Policy Gradient (DDPG)
[10] is a model-free algorithm that learns both the
Q-function and the policy. The Q-function esti-
mates the expected sum of rewards that can be ob-
tained from taking a specific action in a given state,
while the policy specifies the agent’s behaviour,
mapping the states to actions. The Q-function and
policy are learned in two separate steps, with the Q-
function being learned first, followed by the policy.
The authors introduced the requirement of a dif-
ferentiable Q-function, which allowed it to be used
during policy updates in gradient descent. This de-
cision resulted in another property, that this algo-
rithm supports only continuous action space.

3 Related works

A comprehensive survey of generalization in
DRL presented in [1] is a good introduction to the
problem. The authors made an exhaustive descrip-
tion of multiple approaches to tackle the DRL gen-
eralization, including (but not limited to): a brief
foundation to Contextual MDP (CMDP) using orig-
inal formulation [11] with [12] formalism, transfer
learning evaluation protocols in terms of task distri-
bution (IID and OOD)), classification of popular en-
vironments and formulation of generalization gap
formalism (equation 3) in DRL based on analogous
problem in deep supervised learning.
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During the last years in the area of deep RL
research (DRL), there were multiple attempts to
introduce normalized benchmarks for developing
algorithms, such as collection of environments
from OpenAl Gym [13], DeepMind Control Suite
(DMC) [14] or procedurally generated Procgen
Benchmark [15]. Due to the simplicity of the Ope-
nAl Gym interface, it became de facto a standard
for defining new environments. An example of that
is a Powderworld [16] environment, designed to test
the generalization of agents via rich task distribu-
tions. However, the field is dynamic. The current
maintainers of the Gym decided to create a fork of
it to create a new version called Gymnasium [17].
This variety of benchmark suites helps in the qual-
ity assessment of the agents from the perspective of
diverse task scenarios.

As an example from other branches of ML, a
simple generalization metric, based on robustness
to augmentations, was proposed in [18] for classi-
fication problems in supervised learning. For every
augmented sample for the model’s input, a penalty
is calculated based on the difference between the
probabilities of the predicted classes. The differ-
ence can be interpreted as the disparity in class con-
fidence. The value of the penalty is determined by
the strength of the augmentation. Such an approach
could be used in modelling a generalization metric
in RL if the underlying parameters of an environ-
ment’s dynamics could be measured.

A common technique to obtain success transfer
of a DRL model is to introduce a variety of pertur-
bations during the training [19, 20]. Such procedure
is often pursued in terms of increasing agent robust-
ness, and it is evaluated in terms of comparing per-
formance after transfer similarly to the generaliza-
tion gap metric (3).

Another approach to the RL generalization is
combining DRL with meta-learning techniques.
This field is developing fast and was summarized in
Meta RL survey [21]. It is worth mentioning, that
this approach can be seen as another step towards
artificial general intelligence, according to the Al-
berta Plan for Al Research [6].

The team behind [22] researched two ideas of
modifying DRL algorithms to tackle environment
context: 1) EPOpt, which goal was to maximize the
expected reward over a fraction of environments,
with the worst expected reward. 2) RL?, which tried

to adapt RL agents to identify the dynamics of the
environment at hand by modelling policy and value
functions as recurrent neural networks. The hidden
states of these networks were used as an environ-
ment embedding. The work shows that “vanilla”
DRL algorithms generalize better than the proposed
modifications.

From the perspective of learning representation
of the system state from observations, the authors
of [23] introduced a Reducing Approximation Gap
(RAP) metric to measure “distance” between two
state representations. The derivation of RAP was
followed by careful analysis of problems with pre-
vious approaches to representation metrics and re-
sulted in a state-of-the-art modification to the SAC
algorithm. In opposition to their advancements of
representation learning, this work focuses on ex-
tending the generalization gap (3) based on extrin-
sic rewards instead of intrinsic (i.e. inside the agent)
approximations, to develop methods for assessing
the algorithms’ generalization.

Similarly to this work, the objective of [24]
study was measurement and defining the general-
ization in DRL. The authors were using mean cu-
mulative reward (2) to compare generalization per-
formance. They used the last layers of deep Q-
networks to calculate the Euclidean distance be-
tween them. This approach assumes that the policy
is deterministic, which can not be held in general,
due to the stochastic nature of many RL algorithms.

The generalization is of course not measurable
in terms of qualitative metrics, due to the ambigu-
ous definition of “performing well enough” across
whole task contexts. Before assessing it, some
kind of quantization must be performed, similarly
to [25], which mainly studied the problem of over-
fitting in DRL. The authors of that work proposed
a new procedurally generated testbed environment
called CoinRun, which was used to construct a sim-
ple framework to measure overfitting to the training
domain.

Two metrics for evaluation of environment dif-
ficulty, Policy Information Capacity (PIC) and
Policy-Optimal Information Capacity (POIC) were
proposed in a broad study [5]. These metrics can
be used in the procedure of assessing the goodness
of reward-shaping proposals. During experiments,
it was found that high values of both metrics ef-
fectively correspond to regions of the fastest learn-
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ing. Despite all the advantages and similarly to this
work, the obvious limitation of these metrics falls
mainly in the effective search area.

The matter of assessing the generalization can
also be found in adaptation tasks. For instance, the
problem of domain adaptive human pose estimation
with the absence of access to the source training
data can be initially interpreted as a transfer from
a training context to an external target context (see
red and green contexts in Figure 1) [26, 27].

In addition, it is worth pointing out two more
things: 1) there is a high connection between gen-
eralization and hyperparameters, which was inves-
tigated in [28] and 2) generalization could be eval-
uated in terms of robustness to perturbations in new
environment, which was explored in [29].

4 Methodology

In this work, a generalization assessment prob-
lem has been considered, which can be formulated
as follows: an agent is trained to solve an indepen-
dent task in a parameterized environment. Then,
one of the environment parameters (which is related
to the underlying dynamics of the system) must be
changed by some degree, relative to the training
value. After that, the trained agent is run against a
modified environment to evaluate its performance,
mainly in terms of maximizing the reward. With
collected data, it is possible to compute generaliza-
tion gap metrics (e.g. from equation (3)) and com-
pare them.

The mentioned procedure has been repeated
against different DRL algorithms, which were
trained multiple times with different initialization
seeds. To maintain full control over the environ-
ment, this procedure has been done in simulation.
These steps have been presented in Figure 2.

It is worth mentioning that in literature, trans-
fers to other task domains can be characterized as
repetition (transfer to the same task in the same
environment), interpolation (transfer to IID con-
text), and extrapolation (transfer to OOD context)
[24, 22].

4.1 Proposed metrics

As mentioned in section 1 there are multiple
ways to evaluate the performance of the transferred
agent to the new environment. This work focuses
only on metrics based on the collected reward by
extension of the generalization gap metric (3).

The proposed metrics are based on the follow-
ing ideas. The first one is based on observation of a
group of DRL researchers, who were investigating
results of transfer learning. During that procedure,
their idle talk was about the subjective judgment of
the agents in terms of their performance. Consid-
ering that they were just comparing one model to
the others and commenting on their judgments in an
exaggerated way, a generalization metric based on
performance relation and decibel scale is proposed
as follows:

R n’ % arget
Gratio(n) = ( ‘Ct . )

S Sl i 74 4
R (7, 9c,..) ©

Gag(T) := 1010g,( Graiio(T0), (5)

where the rewards R are defined analogously as in
equation (3). To maintain a valid domain of the log-
arithm and fraction, the rewards R must be normal-
ized to a positive, non-zero range.

Furthermore, taking into consideration multiple
transfer targets (n > 2) of task contexts, an average
transfer metric can be defined:

1
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where ||Ciarget|| is the size of the target context (i.e.
number of all environment instances in the target
domain) and G,y is any generalization metric, like
difference (3), ratio (4) or decibel (5). The latter
comes from an assumption, that in general, investi-
gating the whole target context is too expensive, but
an educated guess about performance could be told
with an appropriate number of tests.
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Figure 2. The methodology used in this work. First, the agents are trained in a fixed environment. Then an
evaluation procedure is performed on the transferred agent to a slightly changed environment. Please note,
that from the perspective of the agent the space and observation domain are the same — only the
underlying dynamics of the environment are different. Finally, the obtained results (in terms of total
reward) are used to calculate generalization metrics.

S Experiments

5.1 Experimental setup

The algorithms were trained on the DMC suite
using the implementation from Ray RLIib frame-
work [30]. Ray is a software framework for scal-
ing up machine learning research and development
through tools for easily running multiple experi-
ments in parallel, and then gathering all data and
trained models in one place. RLIib is one of the
submodules of Ray, which offers support for highly
distributed RL setups, including support for multi-
agent environments, training from offline datasets
(recorded trajectory of actions and states), and in-
tegration with external environments. The authors
of RLIib included implementations of many well-
established RL algorithms both in PyTorch and Ten-
sorflow deep learning frameworks, including PPO,
DDPG, and SAC.

To set up a simple scenario for testing gener-
alization over some perturbations to the environ-
ment parameters, a simple modification to the DMC
benchmark suite was made. For each of its 14 en-
vironments (see figure 3) one parameter related to
the system dynamics was selected. The selection
of these variables was made on the difficulty ba-
sis of interference in the environment definition. In
other words, the simplest variables to modify were
selected. These parameters are presented in Ta-
ble 1. Each parameter has 20 discrete values, de-
fined within boundaries of 10% and 200% of the
base value, with a step of 10%. The logic behind the
selection of these unified ranges’ boundaries was
insurance to have significantly different dynamics
of the underlying system, which still have physical
meaning.

It should be noted that the DMC benchmark
suite contains 28 tasks, defined unevenly in 14 en-
vironments. For reference, please consult the DMC
suite paper [14] or check appendix A.

For obtaining qualitative generalization assess-
ment, metrics (2), (3), (4), (5) and (6) were imple-
mented. DMC suite avoids negative rewards, but
there is still a chance that an algorithm could ob-
tain zero rewards in the whole episode. In that case,
the trained model should be discarded and trained
again. In this work, such a problem did not happen.

Table 1. Selection of underlying parameters in
DMC environments to parameterize. The
boundaries of the parameter ranges are defined as
10% and 200% of the base value. Each parameter
has 20 discrete values (with the step of 10% of the
base value).

Environment Parameter Base Range  Units
acrobot joints mass 1.00 [0.1,2.0] kg
ball in cup string length 0.30 [0.03,0.6] m
cartpole pole mass 0.10 [0.01,0.2] kg
cheetah  torso half length ~ 0.50 [0.05,1.0] m
finger damping 2.30 [0.23,4.6] -
coefficient
fish fins servo gain ~ 3.00-  [0.3,6,0] -
104 104
hopper  upper torso height  0.20 [0.02,04] m
humanoid  hips gear ratio  120.00  [12,240] -
manipulator motor gear ratio  12.00 [1.2,24] -
pendulum  pendulum mass 1.00 [0.1,2] kg
point mass point mass 0.30 [0.03,0.6] kg
reacher  joints gears ratio  0.05  [0.005,0.1] -
swimmer motors gears ratio  5.00-  [0.5,10.0]- -
10~ 10~
walker hips gear ratio  100.00  [10,200] -
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The whole project is available as an open source
code on GitHub: https://github.com/macmacal/

drl_generalization_metrics.

Figure 3. DeepMind Control Suite environments
from a subset called benchmark. They are sorted
alphabetically (same as in Table 1), in order from
the upper left to the bottom right. Each
environment ha s defined at least one task, with a
total of 28 tasks in a selected subset. Image taken
from [14].

5.2 Agents training

The agents were trained using almost default
configs from the Ray RLIib framework, differing
only in the number of layers for underlying neural
networks as 2, across all RL algorithms. The obser-
vations of the environment were the state vector of
the system. For each of the 28 tasks in DMC bench-
mark suite, a separate model has been learned to use
5 different initialization random seeds. The training
procedure resulted in 15 models for each of the 28
tasks. Please note, that not all models are expected
to perform well. Due to the lack of hyperparameters
and architecture optimization, some trials of the se-
lected algorithms struggled during training, even in
simple environments. See Appendix A for a sum-
mary of all learning trials and configurations.

Performing an analysis of the training perfor-
mance of the models, it was possible to conclude
which algorithms were able to find (near) subopti-
mal solutions. For further discussion 18 tasks were
discarded due to inability to find a solution (ac-
robot, cartpole swigup sparse, hopper, manipula-
tor, pendulum, humanoid run) or very high un-
certainty in episode reward (finger turn easy, fin-
ger turn hard, fish, humanoid run & walk, reacher,
swimmer). The training process of the remaining
10 tasks is presented in Figure 4.

5.3 Evaluation of agent generalization

According to the setup described in section 5.1,
each of the trained models was evaluated in terms

of mean cumulative reward (2) in 20 slightly differ-
ent environment instances of the given task. Each
model seed was tried 30 times, which resulted in a
total of 150 data points per environment instance.
The results for considered 10 tasks are presented in
Figure 5. The tenth instances of the environments
are identical to the training context, where the rest
are considered as the target domain (in accordance
to the figure 1).

Investigation of obtained results shows a ten-
dency of decreasing performance across different
instances of the environment. Of course, it highly
depends on the selection of the environment param-
eters, which in specific cases could relax the prob-
lem to a simpler one. The variance of the model’s
performance can be interpreted as stability or re-
peatability, which ideally should be minimized. In
the case of the PPO algorithm for all walker tasks,
the performance is increasing in terms of higher
hips gear ratio values. Such an effect is probably
connected with poor training results for this DRL
algorithm (figure 4, walker tasks). For the con-
sidered tasks of cartpole, point mass environment
and walker-stand task, the SAC algorithm general-
ized well in both maintaining relative (in compari-
son to the training value) high rewards and a rela-
tively small variance.

The results show that the SAC algorithm was
the most stable. In comparison with PPO and SAC,
DDPG struggled and finally failed in terms of sta-
bility, both in training and evaluation.

5.4 Metrics comparison

The measured mean cumulative rewards (2)
obtained during the evaluation analysis in section
above were further used to calculate relative met-
rics of: difference (3), ratio (4) and decibel (5). The
aggregated results are presented in Figure 8 (in Ap-
pendix A). For the sake of clear presentation, the
five tasks out of ten (finger spin, point mass easy,
walker run, walker stand & walker walk tasks) are
presented in Figure 6. These tasks have relatively
more informative box plots than the rest five plots.

From the perspective of formulation of an opti-
mization problem, the generalization gap difference
metric is sufficient to show the trend of algorithm
performance. Both ratio and decibel metrics can be
considered as normalized charts of the generaliza-
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Figure 4. Selected results of training the DRL algorithms on DMC benchmark suite with 500 steps
horizon. The bold line with corresponding area indices is the mean reward and its minimal and maximal
value during model evaluation. Each algorithm was trained for 500k environment steps with 5 different
network initialization seeds. The presented results show the mean of all model seeds. The SAC results are
interpolated for alignment with PPO and DDPG.
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Figure 5. Performance of the DRL algorithms across selected tasks with slightly different underlying
parameters of the environment. The performance is described with the value of the cumulative reward (2).
The tendency to increase performance after the transfer of the PPO algorithm is probably connected with
insufficient training time.
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Figure 6. Three generalization gap metrics (difference (3), ratio (4) and decibel (5)), for sub-selection of
the tasks from figure 5. The relative value (final training performance) is the mean of the tenth environment
instance. The chart for decibel metric for point mass easy task lacks data for PPO and DDPG due to the
problems with near-zero numerical errors.
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tion gap. On the other hand, determining the criteria
of ”good enough” performance of the transformed
model can be easier done in these metrics.

The rewards’ ratio can be used to formulate
straightforward requirements for transfers. For in-
stance, for the finger spin task a value of > 95% per-
formance after transfer disqualifies all DDPG mod-
els, where PPO and SAC models in a significant
number of environment instances. However, using
any kind of relative metric does not inform about
the original performance of the algorithm. The re-
sults must be investigated, as it is easier to general-
ize failure than success over different environment
instances.

Transforming the ratio values into decibels
scale allows highlighting of a great decrease in the
performance, like in cases of walker run and walker
walk tasks.

All three metrics can shed more light on the
problem, both in interpolation and extrapolation
transfers. It must be noted, that calculating the
logarithm-based metrics must take the design of
the reward function into consideration — such an
approach is not feasible for non-positive rewards.
Problems with near-zero calculations occurred with
decibel metric for the following tasks: finger spin,
point mass easy & ball in cup catch.

5.5 Mean generalization metrics

From a practical perspective, evaluation of the
whole target context is computationally expensive
and time-consuming. To address that, a sim-
ple method for assessing the generalization perfor-
mance across the whole target domain is proposed:
an average generalization metric (6). It can be
used with any other mentioned metric Gayy. The
main idea is to sample environment instances in the
target domain, evaluate transfers, and calculate the
average generalization metric. The results for ap-
plying this method for difference (3), ratio (4) and
decibel (5) metrics are presented in Table 2.

The average difference metric does not inform
much about the potential problem with order of
magnitude, which could be highlighted with ratio
or decibel metrics. Calculating the average and ac-
companying standard deviation can be used to pro-
vide information about the repeatability and robust-
ness of the trained models. Especially high (over

43%) uncertainly is observed for: DDPG algorithm
in ball in cup catch, cartpole balance sparse, cart-
pole balance & point mass easy tasks; PPO algo-
rithm in the ball in cup catch and point mass easy
tasks. On the other hand, the SAC algorithm per-
forms more robustly on average across ten selected
tasks.

Obviously, it must be stated that every aver-
age is prone to outliers and the input values should
be inspected before proceeding with such an ap-
proach. The method of sampling environment in-
stances from the target context remains open for fur-
ther work.

5.6 Environment normal distribution
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Figure 7. Decibels generalization metric (5) for all
DRL algorithms across instances of the walker
environment for the walk task. The dots represent
outliers. With the assumption, that the boundaries
of the underlying parameter (here: hips gear ratio)
can be interpreted as a range from —5 to 5 standard
deviation and the mean is the training value, it is
possible to add auxiliary information for assessing
the transfer performance. For the sake of clear
presentation, the standard deviation range was
calculated for [0,200] boundaries instead
of [10,200].
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Table 2. Averages of normal distribution parameters among all environment instances, used as the average
generalization metric (6). These results were calculated for considered relative generalization gap metrics.
The values of ¢ standard deviation, which can be interpreted as policy robustness, are even more crucial
than the actual u mean performance value.

DDPG PPO SAC
Task
u | o u | o uw | o
Difference metric
ball_in_cup-catch 43.15 |311.26 | 553.99 | 328.74 | —53.30 | 227.71
cartpole-balance_sparse | 120.62 | 377.22 | 575.19 | 49.27 | —=305.54| 0.00
cartpole-balance 117.55 | 297.67 | 321.84 | 73.57 | —287.97 | 14.81
cartpole-swingup 320.95 [ 156.72 | 429.21 | 56.47 | —131.27 | 61.45
cheetah-run 551.94 | 137.84 | 595.43 | 32.67 | 468.47 |130.36
finger-spin 461.26 | 195.36 | 557.43 | 41.81 | 319.45 | 48.48
point_mass-easy 509.67 | 312.61 | 164.92 | 357.91 | —165.12 | 67.63
walker-run 461.15 | 50.34 | 642.38 | 8.37 | 434.40 | 54.58
walker-stand 104.05 | 236.15 | 466.62 | 35.72 | —162.67 | 88.48
walker-walk 178.15 | 112.91 | 584.13 | 27.38 | 239.05 | 82.34
Ratio metric
ball_in_cup-catch 0.94 0.45 0.20 0.47 1.08 0.33
cartpole-balance_sparse | 0.83 0.54 0.17 0.07 1.44 0.00
cartpole-balance 0.83 0.43 0.54 0.11 1.41 0.02
cartpole-swingup 0.54 0.23 0.38 0.08 1.19 0.09
cheetah-run 0.21 0.20 0.14 0.05 0.33 0.19
finger-spin 0.34 0.28 0.20 0.06 0.54 0.07
point_mass-easy 0.27 0.45 0.76 0.52 1.24 0.10
walker-run 0.34 0.07 0.08 0.01 0.37 0.08
walker-stand 0.85 0.34 0.33 0.05 1.23 0.13
walker-walk 0.74 0.16 0.16 0.04 0.66 0.12
Decibel metric

ball_in_cup-catch 0.73 1.11 0.07 0.88 1.07 0.58
cartpole-balance_sparse | —3.81 | 7.16 | —7.98 | 1.66 1.58 0.00
cartpole-balance —1.65 | 3.01 | =2.79 | 0.87 1.51 0.07
cartpole-swingup -3.10 | 1.75 | —4.28 | 0.93 0.74 0.34
cheetah-run —11.69| 9.57 | —8.72 | 1.58 —6.27 4.20
finger-spin —-3.92 | 597 | =755 | 1.41 —2.85 0.64
point_mass-easy —4.63 | 10.61 | —0.69 | 4.76 0.91 0.36
walker-run —592 | 122 |—11.69| 0.66 —5.20 1.03
walker-stand —1.42 | 252 | =5.06 | 0.67 0.48 0.74
walker-walk —2.80 | 2.38 | =891 | 1.13 -3.20 1.70
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In special cases of the environment, where one
of its dynamic parameters can be described in terms
of normal distribution, it is possible to add an aux-
iliary axis to the chart of generalization metric, like
in Figure 7.

This representation view allows highlighting
the portion of the transfer target domain in which
the model will perform within the acceptance range
from the original. Moreover, it can also be used
to show the comparison between training and target
domains, which one can further use to find optimal
boundaries for training.

It should be emphasized that adding this sec-
ond axis for standard deviation introduces an im-
plicit transition from discrete instances of the envi-
ronment to a continuous scale.

6 Limitations and future work

The presented ideas of extending the general-
ization gap metric have their limitations. The most
straightforward issue is the definition of the envi-
ronment’s reward function. In general, such a def-
inition is hard and affects the training and evalua-
tion, thus the whole generalization assessment re-
lies solely on it. It also must be noted, that relative
metrics with any logarithm term can suffer from nu-
merical errors for very small values of the mean cu-
mulative reward.

The increase in relative generalization metrics
can be interpreted in at least two ways: the param-
eter change relaxed the task, or the trained policy
was not performing well in the first place.

The considered metrics were used in well-
defined, simulated environments, which guaranteed
the reproduction of the same instances. In general,
this assumption of stationarity of underlying param-
eters will not hold in real world scenarios. There-
fore, the metrics should be used carefully in real
world evaluation, which is the potential direction of
future work. Especially considering long-horizon
scenarios. Assessment of such long horizon model
reliability was investigated in [31].

Moreover, the number of environment in-
stances, which differed only in one parameter, al-
lowed to treat them like a discrete value in the
charts. In real world scenario, such a quantitative
approach probably will be reduced to qualitative

comparison, especially, when the exact difference
of underlying parameters (e.g. mechanical toler-
ances) will be not known.

The list of evaluated DRL algorithms should
also include more recent ones, like DrQ-v2 [32] or
DreamerV3 [33]. This is especially relevant consid-
ering the experiment results: the DDPG algorithm
performance was very noisy both in training and
evaluation, while PPO could not find better” so-
lutions.

Each evaluation instance had its outliers (see
figure 7), which could be further used to formu-
late a metric for stability and robustness assessment.
However, both this proposition and the considered
metrics are still based on performance in means of
the mean cumulative reward. Future work should
focus on developing metrics that include other im-
portant features, like: time of a training procedure,
sample efficiency, biases towards early stages of
training & execution time.

Estimation of average generalization metric val-
ues in Table 2 assumes that the number of sampled
environment instances is computationally less de-
manding than assessing the whole target domain.
As mentioned in section 5.5 it is also prone to ex-
ceptional poor or excellent performance in particu-
lar instances. Future work in this approach could
investigate optimization methods to determine the
number of environment instances to estimate the
number of samples for the average.

The approach of environment normal distribu-
tion (section 5.6) assumes that there is a possibility
to measure (and change) one of the dynamics pa-
rameters, which can be described as a normal distri-
bution (e.x. the lighting conditions). The practical-
ity of this chart, especially in real world evaluation,
must be verified in future work.

As a final remark, the considered metrics can
not be used straightforwardly in describing the
transfer from a whole domain of tasks in one en-
vironment to another domain of tasks in the same
environment. Such a problem is due to the usage of
the task’s reward definition, which in general will
be not the same across different tasks.
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7 Conclusions

In this work, an investigation of generalization
metrics based on generalization gap formalism has
been made on a simple transfer learning scenario in
DeepMind Control Suite environments. The pro-
posed relative metrics of ratio (4) and decibel (5)
allowed to highlight major changes in the mod-
els” performance. Presenting obtained results in
the form of average generalization metric (table 2)
and as the chart with additional axis scaled in stan-
dard deviation (of the underlying parameter) (fig-
ure 7) allowed to add more insights into the re-
sults. In contrast with already established methods,
these improvements allow for a more straightfor-
ward comparison with given requirements.

However, the subject of the metrics for general-
ization assessment is a very broad topic and future
investigations shall be performed.

Furthermore, the metrics are based only on ex-
ternal reward scores from the environment. Without
further information, it is impossible to tell anything
in terms of good enough performance across the
dynamics context of the trained DRL algorithms.
Further requirements about the task and definition
of the environment are needed to obtain even more
qualitative, but more specific assessment methods.
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A Models training and generaliza-
tion metrics

The algorithms training was accomplished us-
ing Ray 2.1.0 framework inside a Docker container
with Ubuntu 20.04, CUDA 11.6.2, cuDNN 8, and
PyTorch 1.13.1. A corresponding Dockerfile with
all dependencies is available within the project’s
repository. Hardware used for training consists
of AMD Ryzen 9 7950X CPU, NVIDIA GeForce
RTX 3090 (24 GB VRAM) with 64 GB of RAM.

The summary of the training configuration is
presented in Table 3. In the early stages of the re-

search, there were attempts to modify the maximum
episode horizon with Ray configuration. Regardless
of the modification of this parameter, Ray’s RLIib
wrapper for DeepMind Control Suite fixed the hori-
zon to 500 steps. Each algorithm was trained for
500k environment steps with 5 different network
initialization seeds.

The training of the selected three DRL algo-
rithms on all 28 DMC benchmark suite tasks is pre-
sented in Figure 9. Refer to section 5.2 for informa-
tion on which of these trails are discarded.

In Figure 8 the aggregated results of generaliza-
tion metrics for 10 tasks are present. For further
information, refer to the section 5.4.

Table 3. Training parameters shared along all DRL

algorithms.

General
evaluation_config/render_env false
evaluation_interval 10
evaluation_num_workers 2
framework torch
log_level ERROR
num-gpus 1
num_workers 8

Model
fcnet_activation relu
fcnet_hiddens [64, 64]
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