Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 39, Fasc. 1 | 199--218
Tytuł artykułu

Reflected BSDEs with general filtration and two completely separated barriers

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider reflected backward stochastic differential equations, with two barriers, defined on probability spaces equipped with filtration satisfying only the usual assumptions of right-continuity and completeness. As for barriers, we assume that there are càdlàg processes of class D that are completely separated. We prove the existence and uniqueness of solutions for an integrable final condition and an integrable monotone generator. An application to the zero-sum Dynkin game is given.
Wydawca

Rocznik
Strony
199--218
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland, woland@mat.umk.pl
Bibliografia
  • [1] J. S. Cvitanić and I. Karatzas, Backward stochastic differential equations with reflection and Dynkin games, Ann. Probab. 24 (4) (1996), pp. 2024-2056.
  • [2] C. Dellacherie and P.-A. Meyer, Probabilities and Potential, North-Holland, Amsterdam-New York 1978.
  • [3] A. Falkowski, Stochastic differential equations with respect to processes of finite p-variation (in Polish), PhD thesis, Nicolaus Copernicus University, 2015.
  • [4] S. Hamadène and M. Hassani, BSDEs with two reflecting barriers: The general result, Probab. Theory Related Fields 132 (2) (2005), pp. 237-264.
  • [5] S. Hamadène, M. Hassani, and Y. Ouknine, Backward SDEs with two rcll reflecting barriers without Mokobodski’s hypothesis, Bull. Sci. Math. 134 (8) (2010), pp. 874-899.
  • [6] S. Hamadène and H. Wang, BSDEs with two RCLL reflecting obstacles driven by Brownian motion and Poisson measure and a related mixed zero-sum game, Stochastic Process. Appl. 119 (9) (2009), pp. 2881-2912.
  • [7] I. Hassairi, Existence and uniqueness for D-solutions of reflected BSDEs with two barriers without Mokobodzki’s condition, Commun. Pure Appl. Anal. 15 (4) (2016), pp. 1139-1156.
  • [8] T. Klimsiak, Reflected BSDEs on filtered probability spaces, Stochastic Process. Appl. 125 (11) (2015), pp. 4204-4241.
  • [9] T. Klimsiak and A. Rozkosz, Dirichlet forms and semilinear elliptic equations with measure data, J. Funct. Anal. 265 (6) (2013), pp. 890-925.
  • [10] T. Klimsiak and A. Rozkosz, Obstacle problem for semilinear parabolic equations with measure data, J. Evol. Equ. 15 (2) (2015), pp. 457-491.
  • [11] T. Klimsiak and A. Rozkosz, Semilinear elliptic equations with measure data and quasi-regular Dirichlet forms, Colloq. Math. 145 (1) (2016), pp. 35-67.
  • [12] J.-P. Lepeltier and M. Xu, Reflected backward stochastic differential equations with two RCLL barriers, ESAIM Probab. Stat. 11 (2007), pp. 3-22.
  • [13] R. Liptser and A. N. Shiryaev, Statistics of Random Processes, Springer, New York 2001.
  • [14] Ł. Stettner, On a general zero-sum stochastic game with optimal stopping, Probab. Math. Statist. 3 (1) (1983), pp. 103-112.
  • [15] J. Zabczyk, Stopping games for symmetric Markov processes, Probab. Math. Statist. 4 (2) (1984), pp. 185-196.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-078745b1-46d8-474c-af51-7b8d3bb91d65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.