Warianty tytułu
Języki publikacji
Abstrakty
Consider a multiply connected domain D bounded by nonoverlapping circles. Introduce the complex potential u(z) = Re ϕ(z) in D where the function ϕ(z) is analytic in D except at infinity where ϕ(z) ∼ z. The function u(z) models the distribution of temperature in the domain D. The unknown function ϕ(z) is continuously differentiable in the closures of the considered domain. We solve approximately the modified Schwarz problem when u(z) = Re ϕ(z) is equal to an undetermined constant on every boundary component of D by a method of functional equations.
Rocznik
Tom
Strony
1--8
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Institute of Computer Science, Pedagogical University in Cracow, Poland, wojciech.baran@up.krakow.pl
autor
- Institute of Computer Science, Pedagogical University in Cracow, Poland, krystian.kurnik@up.krakow.pl
autor
- Institute of Mathematics, Pedagogical University in Cracow, Poland, wojciech.nawalaniec@up.krakow.pl
autor
- Institute of Mathematics, Pedagogical University in Cracow, Poland
Bibliografia
- 1. Agarwal B.D., Broutman L.J., Chandrashekhara K.: Analysis and Performance of Fiber Composites, 3rd edition. John Wiley, New Jersey 2006.
- 2. Glinski H., Grzymkowski R., Kapusta A., S lota D.: Mathematica 8. Jace Skalmierski Publ., Gliwice 2012.
- 3. Gluzman S., Mityushev V., NawalaniecW.: Computational Analysis of Structured Media. Academic Press/Elsevier, London 2017.
- 4. Grzymkowski R., Pleszczy´nskiM.: Application of the Taylor differential transformation for solving the integro-differential equations. Silesian J. Pure Appl. Math. 8 (2018), 33–48.
- 5. Grzymkowski R., Pleszczy´nski M., Hetmaniok E.: Application of the Taylor differential transformation in the calculus of variations. Silesian J. Pure Appl. Math. 7 (2018), 65–82.
- 6. Grzymkowski R., Hetmaniok E., Pleszczy´nski M.: Application of the Taylor differential transformation in the calculus of variations. Silesian J. Pure Appl. Math. 6 (2016), 111–123.
- 7. Kurtyka P., Rylko N.: Quantitative analysis of the particles distributions in reinforced composites. Compos. Struct. 182 (2017), 412–419.
- 8. Mityushev V.V., Rogosin S.V.: Constructive Methods for Linear and Nonlinear Boundary Value Problems of the Analytic Function. Theory and Applications. Chapman & Hall/CRC, Boca Raton 2000.
- 9. Nawalaniec W.: Random non-overlapping walks of disks on the plane. Trends Math. 2 (2015), 769–775.
- 10. Rylko N.: A pair of perfectly conducting disks in an external field. Math. Model. Anal. 20 (2015), 273–288.
- 11. Rylko N.: Edge effects for heat flux in fibrous composites. Comput. Math. Appl. 70 (2015), 2283–2291.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-077390ec-80c3-40b4-ad09-a92255f65682