Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, nr 9 | 19--26
Tytuł artykułu

Use of Low-Cost Adsorbent for Copper and Lead Removal from Aqueous Solutions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effect of the use of environmentally friendly materials (sawdust) in the reduction of some heavy elements of industrial wastewater was studied. The removal of lead and copper elements was tested. In order to evaluate the effect of this material and other factors in increasing the efficiency of removal, different concentrations of heavy elements of lead and copper 5, 10, 15, and 20 mg/l and contact time (10, 20, 30, and 40 s) were tested. The effect of pH was also investigated at levels of (3, 5, 7, and 10, as well as the impact of the amount of sawdust used and the rate of speed of mixing was 75, 100, 150, and 250 rpm. The results showed that the highest lead removal efficiency was (95%) when using 2 gm of sawdust at ten pH. In comparison, the highest removal efficiency of copper was 92.5%, when the pH 7 and the study of the number of revolutions and contact time. The results were good indicators when the value of the agitation speed was 75 rpm. Lead removal was 98%, and copper was 94.5% at a speed of 100 rpm. The result also recorded significant effect of time on the removal efficiency; the efficiency of removal of copper was 90–94% at 30 min, while the removal efficiency of lead was 70–73% at 34–40 minute period.
Wydawca

Rocznik
Strony
19--26
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Environment and Water Directorate, Ministry of Science and Technology, Baghdad, Iraq
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Environment and Water Directorate, Ministry of Science and Technology, Baghdad, Iraq, alfuraiji79@gmail.com
Bibliografia
  • 1. Acar, F.N., Eren, Z. 2006. Removal of Cu(II) Ions by Activated Poplar Sawdust (Samsun Clone) from Aqueous Solutions. Journal of Hazardous Materials, 137(2), 909–914. https://doi.org/10.1016/j.jhazmat.2006.03.014
  • 2. Alalwan, H., Alminshid, A. 2020. An In-Situ DRIFTS Study of Acetone Adsorption Mechanism on TiO2 Nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 229(March), 117990. https://doi.org/10.1016/j.saa.2019.117990
  • 3. Arora, R. 2019. Adsorption of Heavy Metals–A Review. Materials Today: Proceedings, 18, 4745–50. https://doi.org/10.1016/j.matpr.2019.07.462
  • 4. Chaudhari, S., Tare, V. 2008. Removal and Recovery of Heavy Metals from Simulated Wastewater Using Insoluble Starch Xanthate Process. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(3), 170–180. https://doi.org/10.1061/(ASCE)1090-025X(2008)12:3(170)
  • 5. Chuah, T.G., Jumasiah, A., Azni, I., Katayon, S., Thomas Choong, S.Y. 2005. Rice Husk as a Potentially Low-Cost Biosorbent for Heavy Metal and Dye Removal: An Overview. Desalination, 175(3), 305–316. https://doi.org/10.1016/j.desal.2004.10.014
  • 6. Gaballah, I., Goy, D., Allain, E., Kilbertus, G., Thauront, J. 1997. Recovery of Copper through Decontamination of Synthetic Solutions Using Modified Barks. Metallurgical and Materials Transactions B, 28(1), 13–23. https://doi.org/10.1007/s11663-997-0122-3
  • 7. Guo, Y., Yang S., Fu, W., Qi, J., Li, R., Wang, Z., Xu, H. 2003. Adsorption of Malachite Green on Micro- and Mesoporous Rice Husk-Based Active Carbon. Dyes and Pigments, 56(3), 219–229. https://doi.org/10.1016/S0143-7208(02)00160-2
  • 8. Kadhom, M., Albayati, N., Alalwan, H., Al-Furaiji, M. 2020. Removal of Dyes by Agricultural Waste. Sustainable Chemistry and Pharmacy, 16(June), 100259. https://doi.org/10.1016/j.scp.2020.100259
  • 9. Kadhom, M., Kalash, K., Al-Furaiji, M. 2021. Performance of 2D MXene as an Adsorbent for Malachite Green Removal. Chemosphere, 290(October 2021), 133256. https://doi.org/10.1016/j.chemosphere.2021.133256
  • 10. Kalash, Khairi R., A. Alalwan H.A., Al-Furaiji, M.H., Alminshid A.H., Waisi, B.I. 2020. Isothermal and Kinetic Studies of the Adsorption Removal of Pb(II), Cu(II), and Ni(II) Ions from Aqueous Solutions Using Modified Chara Sp. Algae. Korean Chemical Engineering Research, 58(2), 301–306. https://doi.org/10.9713/kcer.2020.58.2.301
  • 11. Khairi R.K., Al-Furaiji, M. 2020. Evaluation of Adsorption Performance of Phenol Using Non-Calcined Mobil Composition of Matter No. 41 Particles. Desalination and Water Treatment, 198, 232–240. https://doi.org/10.5004/dwt.2020.26018
  • 12. Kumar, U., Bandyopadhyay, M. 2006. Sorption of Cadmium from Aqueous Solution Using Pretreated Rice Husk. Bioresource Technology, 97(1), 104–109. https://doi.org/10.1016/j.biortech.2005.02.027
  • 13. Meez, E., Rahdar, A., Kyzas, G.Z. 2021. Sawdust for the Removal of Heavy Metals from Water: A Review. Molecules, 26(14), 4318. https://doi.org/10.3390/molecules26144318
  • 14. Megat Hana, M.A.K., Wan Ngah, W.S., Zakaria, H., Ibrahim, S.C. 2007. Batch Study of Liquid-Phase Adsorption of Lead Ions Using Lalang (Imperata Cylindrica) Leaf Powder. Journal of Biological Sciences, 7(2), 222–230. https://doi.org/10.3923/jbs.2007.222.230
  • 15. Namasivayam, C., Ranganathan, K. 1998. Effect of Organic Ligands on the Removal of Pb(II), Ni(II) and Cd(II) by ‘Waste’ Fe(III)/Cr(III) Hydroxide. Water Research, 32(3), 969–971. https://doi.org/10.1016/S0043-1354(97)00222-4
  • 16. Naseem, R., Tahir, S.S. 2001. Removal of Pb(II) from Aqueous/Acidic Solutions by Using Bentonite as an Adsorbent. Water Research, 35(16), 3982–3986. https://doi.org/10.1016/S0043-1354(01)00130-0
  • 17. Rainbow, P.S. 2002. Trace Metal Concentrations in Aquatic Invertebrates: Why and so What?” Environmental Pollution, 120(3), 497–507. https://doi.org/10.1016/S0269-7491(02)00238-5
  • 18. Sćiban, M., Klasnja, M., Skrbić, B. 2006. Modified Softwood Sawdust as Adsorbent of Heavy Metal Ions from Water. Journal of Hazardous Materials, 136(2), 266–271. https://doi.org/10.1016/j.jhazmat.2005.12.009.
  • 19. Srivastava, N.K., Majumder, C.B. 2008. Novel Biofiltration Methods for the Treatment of Heavy Metals from Industrial Wastewater. Journal of Hazardous Materials, 151(1), 1–8. https://doi.org/10.1016/j.jhazmat.2007.09.101
  • 20. Tarley, T., Ricardo, C., Ferreira S.L.C., Arruda, M.A.Z. 2004. Use of Modified Rice Husks as a Natural Solid Adsorbent of Trace Metals: Characterisation and Development of an on-Line Preconcentration System for Cadmium and Lead Determination by FAAS. Microchemical Journal, 77(2), 163–175. https://doi.org/10.1016/j.microc.2004.02.019
  • 21. Yu, B., Zhang, Y., Shukla, A., Shukla, S.S., Dorris K.L. 2000. The Removal of Heavy Metal from Aqueous Solutions by Sawdust Adsorption – Removal of Copper. Journal of Hazardous Materials, 80(1–3), 33–42. https://doi.org/10.1016/S0304-3894(00)00278-8
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-07373a1d-d06a-408a-b0b1-1cec2a79f41a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.