Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 2 | 115--128
Tytuł artykułu

The Effect of HVOF Spray Distance on Solid Particle Erosion Resistance of WC-based Cermets Bonded by Co, Co-Cr and Ni Deposited on Mg-alloy Substrate

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnesium alloys are very interesting engineering materials because of their high strength-to-density ratio. On the other hand, they are characterized by low hardness as well as low erosion resistance. Because of these reasons, their applications in the industry are very limited. The article presents the results of the high velocity oxy-fuel (HVOF) spraying of the hard cermet coatings onto AZ31 magnesium alloy substrate. Three feedstock powders were used in the process with composition (wt.%): WC-12Co, WC-10Co-4Cr and WC-20Cr3C2Ni. The spray distance (SD) was selected as a variable parameter with values equal to 320 and 400 mm. Observations carried out under a scanning electron microscope (SEM) revealed a typical HVOF-sprayed microstructure with a compact structure and low porosity (below 3 vol.%). The hardness of the manufactured coatings, ranging from 912 HV0.2 to 1328 HV0.2, what was significantly higher than the substrate. The solid particle erosion tests were carried out according to the ASTM G76-04 standard. Erosive experiments were done for 30°, 60° and 90° inclination angles of the nozzle using Al2O3 abrasive. Erosion tests confirm that cermets exhibit substantial erosion resistance better than the substrate. The highest erosion resistance was noted for WC-10Co-4Cr coatings. The erosion rate for cermet coatings was mostly below 0.9 mg/min, whereas for the AZ31 it was more than 1.5 mg/min. In the case of the average erosion value, it was between 12 and 22 times lower than for the substrate. Results analysis reveal that shorter spray distance decreases porosity, increases hardness, and finally supports erosion resistance of the cermets.
Wydawca

Rocznik
Strony
115--128
Opis fizyczny
Bibliogr. 55 poz., fig., tab.
Twórcy
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a., 44100 Gliwice, Poland, ewa.jonda@polsl.pl
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, ul. Łukasiewicza 5., 50371 Wroclaw, Poland, leszek.latka@pwr.edu.pl
  • Welding Department, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a., 44100 Gliwice, Poland, aleksandra.lont@polsl.pl
  • Materials Research Laboratory, Silesian University of Technology, ul. Konarskiego 18a., 44100 Gliwice, Poland, klaudiusz.golobmek@polsl.pl
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36., 20618 Lublin, Poland, m.szala@pollub.pl
Bibliografia
  • 1. Alves H, Koster U, Aghion E, Eliezer D. Environmental behavior of magnesium and magnesium alloysd. materials technology. 2001; 16: 110–26. https://doi.org/10.1080/10667857.2001.11752920.
  • 2. Song G. Recent Progress in corrosion and protection of magnesium alloys. Adv. Eng. Mater. 2005; 7: 563–586. https://doi.org/10.1002/adem.200500013.
  • 3. Liu B, Yang J, Zhang X, Yang Q, Zhang J, Li X. Development and application of magnesium alloy parts for automotive OEMs: A review. Journal of Magnesium and Alloys. 2023; 11: 15–47. https://doi.org/10.1016/j.jma.2022.12.015.
  • 4. Tan J, Ramakrishna S. Applications of magnesium and its alloys: a review. Applied Sciences. 2021; 11: 6861. https://doi.org/10.3390/app11156861.
  • 5. Kondaiah VV, Pavanteja P, Afzal Khan P, Anannd Kumar S, Dumpala R, Ratna Sunil B. Microstructure, hardness and wear behavior of AZ31 Mg alloy – fly ash composites produced by friction stir processing. Materials Today: Proceedings.2017; 4: 6671–6677. https://doi.org/10.1016/j.matpr.2017.06.441.
  • 6. Song G-L, Xu Z. The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electrochimica Acta. 2010; 55:4148–4161. https://doi.org/10.1016/j.electacta.2010.02.068.
  • 7. Morelli S, Rombolà G, Bolelli G, Lopresti M, Puddu P, Boccaleri E, et al. Hard ultralight systems by thermal spray deposition of WC-CoCr onto AZ31 magnesium alloy. Surface and Coatings Technology. 2022; 451: 129056. https://doi.org/10.1016/j.surfcoat.2022.129056.
  • 8. Oršulová T, Palček P. Changes in hardness of magnesium alloys due to precipitation hardening. Production Engineering Archives. 2018; 18: 46–9. https://doi.org/10.30657/pea.2018.18.08.
  • 9. Akyuz B. A study on wear and machinability of AZ series (AZ01-AZ91) cast magnesium alloys. Km. 2016; 52: 255–62. https://doi.org/10.4149/km_2014_5_255.
  • 10. Ishikawa Y, Kawakita J, Osawa S, Itsukaichi T, Sakamoto Y, Takaya M, et al. Evaluation of corrosion and wear resistance of hard cermet coatings
  • sprayed by using an improved HVOF Process. Journal of Thermal Spray Technology. 2005; 14: 384–90. https://doi.org/10.1361/105996305X59378.
  • 11. Ahmed R, Ali O, Berndt CC, Fardan A. Sliding wear of conventional and suspension sprayed nanocomposite WC-Co coatings: an invited review. J Therm Spray Tech. 2021; 30: 800–861. https://doi.org/10.1007/s11666-021-01185-z.
  • 12. Singh J, Vasudev H, Szala M, Gill HS. Neural computing for erosion assessment in Al-20TiO2 HVOF thermal spray coating. Int. J. Interact. Des. Manuf. 2023. https://doi.org/10.1007/s12008-023-01372-y.
  • 13. Szala M, Walczak M, Łatka L, Gancarczyk K, Özkan D. Cavitation erosion and sliding wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying. Advances in Materials Science. 2020; 20:
  • 26–38. https://doi.org/10.2478/adms-2020-0008.
  • 14. Oksa M, Turunen E, Suhonen T, Varis T, Hannula S-P. Optimization and characterization of high velocity oxy-fuel sprayed coatings: techniques, materials, and applications. Coatings. 2011; 1:17–52. https://doi.org/10.3390/coatings1010017.
  • 15. Ozimina D, Madej M, Kałdoński T. The Wear Resistance of HVOF sprayed composite coatings. Tribol. Lett. 2011; 41: 103–11. https://doi.org/10.1007/s11249-010-9684-3.
  • 16. Goral M, Kubaszek T, Grabon WA, Grochalski K, Drajewicz M. The concept of WC-CrC-Ni plasma-sprayed coating with the addition of YSZ nanopowder for cylinder liner applications. Materials. 2023; 16: 1199. https://doi.org/10.3390/ma16031199.
  • 17. Nowakowska M, Łatka L, Sokołowski P, Szala M, Toma F-L, Walczak M. Investigation into microstructure and mechanical properties effects on sliding wear and cavitation erosion of Al2O3–TiO2 coatings sprayed by APS, SPS and S-HVOF. Wear. 2022; 508–509: 204462. https://doi.org/10.1016/j.wear.2022.204462.
  • 18. Bolelli G, Lusvarghi L, Barletta M. HVOF-sprayed WC–CoCr coatings on al alloy: effect of the coating thickness on the tribological properties. Wear. 2009; 267: 944–953. https://doi.org/10.1016/j.wear.2008.12.066.
  • 19. Puchi-Cabrera ES, Staia MH, Santana YY, Mora-Zorrilla EJ, Lesage J, Chicot D, et al. Fatigue behavior of AA7075-T6 aluminum alloy coated with a WC–10Co–4Cr cermet by HVOF thermal spray. Surface and Coatings Technology. 2013; 220: 122–30. https://doi.org/10.1016/j.surfcoat.2012.04.087.
  • 20. Couto M, Dosta S, Guilemany JM. Comparison of the mechanical and electrochemical properties of WC-17 and 12Co coatings onto Al7075-T6 obtained by high velocity oxy-fuel and cold gas spraying. Surface and Coatings Technology. 2015; 268: 180–189. https://doi.org/10.1016/j.surfcoat.2014.04.034.
  • 21. Varol Özkavak H, Şahin Ş, Saraç MF, Alkan Z. Comparison of wear properties of HVOF sprayed WC-Co and WC-CoCr coatings on Al alloys. Mater. Res. Express. 2019; 6: 096554. https://doi.org/10.1088/2053-1591/ab2ee1.
  • 22. Palanisamy K, Gangolu S, Mangalam Antony J. Effects of HVOF spray parameters on porosity and hardness of 316L SS coated Mg AZ80 alloy. Surface and Coatings Technology. 2022; 448:128898. https://doi.org/10.1016/j.surfcoat.2022.128898.
  • 23. Szala M, Walczak M, Świetlicki A. Effect of microstructure and hardness on cavitation erosion and dry sliding wear of HVOF deposited CoNiCrAlY, NiCoCrAlY and NiCrMoNbTa coatings. Materials. 2021; 15: 93. https://doi.org/10.3390/ma15010093.
  • 24. Jonda E, Łatka L, Godzierz M, Maciej A. Investigations of microstructure and corrosion resistance of WC-Co and WC-Cr3C2-Ni coatings deposited by HVOF on magnesium alloy substrates. Surface and Coatings Technology. 2023; 459: 129355. https://doi.org/10.1016/j.surfcoat.2023.129355.
  • 25. Fang W, Cho TY, Yoon JH, Song KO, Hur SK, Youn SJ. Processing optimization, surface properties and wear behavior of HVOF spraying WC–CrC–Ni coating. Journal of Materials Processing Technology. 2009; 209: 3561–3567. https://doi.org/10.1016/j.jmatprotec.2008.08.024.
  • 26. Jonda E, Szala M, Sroka M, Łatka L, Walczak M. Investigations of cavitation erosion and wear resistance of cermet coatings manufactured by HVOF spraying. Applied Surface Science. 2023; 608:155071. https://doi.org/10.1016/j.apsusc.2022.155071.
  • 27. Jonda E, Łatka L, Maciej A, Khozhanov A. Investigations on the microstructure and corrosion performance of different wc-based cermet coatings deposited by high velocity oxy fuel process onto magnesium alloy substrate. Adv. Sci. Technol. Res. J. 2023; 17: 25–35. https://doi.org/10.12913/22998624/160513.
  • 28. Jonda E, Łatka L, Tomiczek A, Godzierz M, Pakieła W, Nuckowski P. Microstructure investigation of wc-based coatings prepared by HVOF onto AZ31 substrate. Materials. 2021; 15: 40. https://doi.org/10.3390/ma15010040.
  • 29. Hong S, Wu Y, Wu J, Zhang Y, Zheng Y, Li J, et al. Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines. Renewable Energy. 2021; 164: 1089–1099. https://doi.org/10.1016/j.renene.2020.08.099.
  • 30. Wang H, Qiu Q, Gee M, Hou C, Liu X, Song X. Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densification of starting pow-
  • der. Materials & Design. 2020; 191: 108586. https://doi.org/10.1016/j.matdes.2020.108586.
  • 31. Zhang H, Chen X, Gong Y, Tian Y, McDonald A, Li H. In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings. Ultrasonics Sonochemistry. 2020; 60: 104760. https://doi.org/10.1016/j.ultsonch.2019.104760.
  • 32. Yao H-L, Yang C, Yi D-L, Zhang M-X, Wang H-T, Chen Q-Y, et al. Microstructure and mechanical property of high velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings. Surface and Coatings Technology. 2020; 397: 126010. https://doi.org/10.1016/j.surfcoat.2020.126010.
  • 33. Praveen AS, Arjunan A. High-temperature oxidation and erosion of HVOF sprayed NiCrSiB/Al2O3 and NiCrSiB/WC Co coatings. Applied Surface Science Advances. 2022; 7: 100191. https://doi.org/10.1016/j.apsadv.2021.100191.
  • 34. Sidhu HS, Sidhu BS, Prakash S. Mechanical and microstructural properties of HVOF sprayed WC–Co and Cr3C2–NiCr coatings on the boiler tube steels using LPG as the fuel gas. Journal of Materials Processing Technology. 2006; 171:77–82. https://doi.org/10.1016/j.jmatprotec.2005.06.058.
  • 35. Mishra TK, Kumar A, Sinha SK. Experimental investigation and study of HVOF sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr coating on its sliding wear behaviour. International Journal of Refractory Metals and Hard Materials. 2021; 94: 105404. https://doi.org/10.1016/j.ijrmhm.2020.105404.
  • 36. Yao H-L, Zhang M-X, Yang C, Chen Q-Y, Wang H-T, Bai X-B, et al. Microstructure and mechanical property of high velocity oxy-fuel sprayed multimodal WC-Cr3C2–Co–Y2O3 cermet coating. Ceramics International. 2020; 46:19431–19442. https://doi.org/10.1016/j.ceramint.2020.04.288.
  • 37. Testa V, Morelli S, Bolelli G, Benedetti B, Puddu P, Sassatelli P, et al. Alternative metallic matrices for WC-based HVOF coatings. Surface and Coatings Technology. 2020; 402: 126308. https://doi.org/10.1016/j.surfcoat.2020.126308.
  • 38. Raza A, Ahmad F, Badri TM, Raza MR, Malik K. An influence of oxygen flow rate and spray distance on the porosity of HVOF coating and its effects on corrosion—a review. Materials. 2022; 15:6329. https://doi.org/10.3390/ma15186329.
  • 39. Murugan K, Ragupathy A, Balasubramanian V, Sridhar K. Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC–10Co–4Cr coatings. Surface and Coatings Technology. 2014; 247: 90–102. https://doi.org/10.1016/j.surfcoat.2014.03.022.
  • 40. Houdková Š, Bláhová O, Zahálka F, Kašparová M. The instrumented indentation study of HVOF-sprayed hardmetal coatings. J Therm Spray Tech. 2012; 21: 77–85. https://doi.org/10.1007/s11666-011-9677-2.
  • 41. Goyal AK, Sapate SG, Mehar S, Vashishtha N, Bagde P, Rathod A. Tribological properties of HVOF sprayed WC-Cr 3 C 2 -Ni coating. Mater Res Express. 2019; 6: 106415. https://doi.org/10.1088/2053-1591/ab3946.
  • 42. Bolelli G, Berger L-M, Bonetti M, Lusvarghi L. Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC–(W,Cr)2C–Ni and WC–CoCr hardmetal coatings. Wear. 2014; 309:96–111. https://doi.org/10.1016/j.wear.2013.11.001.
  • 43. Yuan J, Ma C, Yang S, Yu Z, Li H. Improving the wear resistance of HVOF sprayed WC-Co coatings by adding submicron-sized WC particles at the splats’ interfaces. Surface and Coatings Technology. 2016; 285: 17–23. https://doi.org/10.1016/j.surfcoat.2015.11.017.
  • 44. Agüero A, Camón F, García de Blas J, del Hoyo JC, Muelas R, Santaballa A, et al. HVOF-deposited WCCoCr as replacement for hard cr in landing gear actuators. J Therm Spray Tech. 2011; 20: 1292–309. https://doi.org/10.1007/s11666-011-9686-1.
  • 45. Komarov P, Jech D, Tkachenko S, Slámečka K, Dvořák K, Čelko L. Wetting behavior of wear-resistant WC-Co-Cr cermet coatings produced by HVOF: The role of chemical composition and surface roughness. J Therm Spray Tech. 2021; 30: 285–303. https://doi.org/10.1007/s11666-020-01130-6.
  • 46. Ding X, Ke D, Yuan C, Ding Z, Cheng X. Microstructure and cavitation erosion resistance of HVOF deposited WC-Co coatings with different sized WC. Coatings. 2018; 8: 307. https://doi.org/10.3390/coatings8090307.
  • 47. Karaoglanli AC, Oge M, Doleker KM, Hotamis M. Comparison of tribological properties of HVOF sprayed coatings with different composition. Surface and Coatings Technology 2017; 318: 299–308. https://doi.org/10.1016/j.surfcoat.2017.02.021.
  • 48. Cabral-Miramontes JA, Gaona-Tiburcio C, Almeraya-Calderón F, Estupiñan-Lopez FH, Pedraza-Basulto GK, Poblano-Salas CA. Parameter studies on high-velocity oxy-fuel spraying of CoNi-CrAlY coatings used in the aeronautical industry. International Journal of Corrosion 2014; 2014:1–8. https://doi.org/10.1155/2014/703806.
  • 49. Li Z, Li Y, Li J, Li F, Lu H, Du J, et al. Effect of NiCr content on the solid particle erosion behavior of NiCr-Cr3C2 coatings deposited by atmospheric plasma spraying. Surface and Coatings Technology. 2020; 381: 125144. https://doi.org/10.1016/j.surfcoat.2019.125144.
  • 50. González MA, Rodríguez E, Mojardín E, Jiménez O, Guillen H, Ibarra J. Study of the erosive wear behaviour of cryogenically and tempered WC-CoCr coating deposited by HVOF. Wear. 2017; 376–377: 595–607. https://doi.org/10.1016/j.wear.2016.12.061.
  • 51. Murthy JKN, Rao DS, Venkataraman B. Effect of grinding on the erosion behaviour of a WC–Co–Cr coating deposited by HVOF and detonation gun spray processes. Wear 2001; 249:592–600. https://doi.org/10.1016/S0043-1648(01)00682-2.
  • 52. Thakur L, Arora N. A comparative study on slurry and dry erosion behaviour of HVOF sprayed WC–CoCr coatings. Wear 2013; 303:405–11. https://doi.org/10.1016/j.wear.2013.03.028.
  • 53. Zhang X, Li F, Li Y, Lu Q, Li Z, Lu H, et al. Comparison on multi-angle erosion behavior and mechanism of Cr3C2-NiCr coatings sprayed by SPS and HVOF. Surface and Coatings Technology 2020;403:126366. https://doi.org/10.1016/j.surfcoat.2020.126366.
  • 54. I. Hussainova. Some aspects of solid particle erosion of cermets. Tribology International 2001; 34:89–93. https://doi.org/10.1016/S0301-679X(00)00140-7.
  • 55. Hutchings IM. Ductile-brittle transitions and wear maps for the erosion and abrasion of brittle materials. J Phys D: Appl Phys 1992;25:A212–21. https://doi.org/10.1088/0022-3727/25/1A/033.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-07079f8c-692f-4eed-ad01-2af1d8a181c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.