Warianty tytułu
Języki publikacji
Abstrakty
Air pollution in the vicinity of roads is a complex and growing problem. In urbanised areas, there are many sources of dust emissions, but one of the main ones is road traffic. Investigating and assessing the physical and chemical properties of road dust and, more specifically, dust collected from surface courses is one way of providing an opportunity not only to identify the contribution of the emitters concerned to the formation of dust air pollution in the vicinity of roads but above all the environmental risks associated with traffic emissions. The study aimed to analyse the elemental composition of dust with a fraction <0.1 mm, collected from asphalt and concrete roads characterised by the highest technical and service parameters in Poland. The samples were analysed using a Shimadzu EDX 7000 energy-dispersive X-ray fluorescence spectrometer, then the results were statistically analysed using the t-Welch test, and the enrichment factors EF were determined. It was shown that road dust with a grain size of less than 0.1 mm collected from asphalt surface course was extremely highly enriched in Cu, Cr, Pb and S, while that from the concrete surface course was enriched in Zn and Zr, indicating a strong anthropogenic origin of these elements; exhaust gases were identified as their source. Irrespective of the type of surface course, very high dust enrichment occurs for Ca, Mn, Ni, S, Ti and Y. These elements may originate from the abrasion process of vehicle tyres. For road dust collected from both road types, the most similar EF values were found for Fe, K, Mn, Si, Sr and Ti. The source of these elements is most likely the roadside soil. It follows that the type of road surface is not the main determinant of the composition of road dust with a fraction <0.1 mm.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
82--90
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
- Fire University, ul. Słowackiego 52/54, 01-629 Warsaw, Poland
autor
- Institute of Technical Sciences and Aviation, State Academy of Applied Sciences in Chełm, ul. Pocztowa 54, 22-100 Chełm, Poland
autor
- Fire University, ul. Słowackiego 52/54, 01-629 Warsaw, Poland, jbihalowicz@apoz.edu.pl
autor
- Institute of Technical Sciences and Aviation, State Academy of Applied Sciences in Chełm, ul. Pocztowa 54, 22-100 Chełm, Poland
- Institute of Civil Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska 166, 02-787 Warsaw, Poland
autor
- Fire University, ul. Słowackiego 52/54, 01-629 Warsaw, Poland
autor
- Institute of Technical Sciences and Aviation, State Academy of Applied Sciences in Chełm, ul. Pocztowa 54, 22-100 Chełm, Poland
Bibliografia
- 1. Aguilera, A., Bautista, F., Gutiérrez-Ruiz, M., Ceniceros-Gómez, A. E., Cejudo, R., Goguitchaichvili, A. 2021. Heavy metal pollution of street dust in the largest city of Mexico, sources and health risk assessment. Environmental Monitoring and Assessment, 193(4), 193. https://doi.org/10.1007/s10661-021-08993-4
- 2. Al-sareji, O.J., Grmasha, R., Salman, J., Hashim, K. 2021. Street dust contamination by heavy metals in babylon governorate, Iraq. Journal of Engineering Science and Technology, 16, 455–469.
- 3. Czajka, A. 2017. Kontrola stanu środowiska glebowego w sąsiedztwie infrastruktury komunikacyjnej. Eliksir, 2, 8–15.
- 4. Duczmal-Czernikiewicz, A., Suchan, J. 2015. Nagromadzenia metali w osadnikach poflotacyjnych na Dolnym Śląsku. Biuletyn Państwowego Instytutu Geologicznego, 465, 67–76.
- 5. Dziubak, S.D. 2021. Contamination of the intake air of internal combustion engines of motor vehicles. Bulletin of the Military University of Technology, 70(2), 35–64. https://doi.org/10.5604/01.3001.0015.7010
- 6. Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., Kokot, S. 2012. Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere, 87(2), 163–170. https://doi.org/10.1016/j.chemosphere.2011.12.012
- 7. Hjortenkrans, D., Bergbäck, B., Häggerud, A. 2006. New metal emission patterns in road traffic environments. Environmental Monitoring and Assessment, 117(1–3), 85–98. https://doi.org/10.1007/s10661-006-7706-2
- 8. Kiebała, A., Kozieł, M., Zgłobicki, W. 2015. Cr, Cu, Ni, Pb i Zn w pyle drogowym na terenie Lublina. Inżynieria i Ochrona Środowiska, 18.
- 9. Konstantinova, E., Minkina, T., Konstantinov, A., Sushkova, S., Antonenko, E., Kurasova, A., Loiko, S. 2022. Pollution status and human health risk assessment of potentially toxic elements and polycyclic aromatic hydrocarbons in urban street dust of Tyumen city, Russia. Environmental Geochemistry and Health, 44(2), 409–432.
- 10. Lazo, P., Steinnes, E., Qarri, F., Allajbeu, S., Kane, S., Stafilov, T., Frontasyeva, M.V., Harmens, H. 2018. Origin and spatial distribution of metals in moss samples in Albania: A hotspot of heavy metal contamination in Europe. Chemosphere, 190, 337–349. https://doi.org/10.1016/j.chemosphere.2017.09.132
- 11. Liu, Y., Jin, T., Yu, S., Chu, H. 2023. Pollution characteristics and health risks of heavy metals in road dust in Ma’anshan, China. Environmental Science and Pollution Research, 30(15), 43726–43739. https://doi.org/10.1007/s11356-023-25303-2
- 12. Majewski, G., Rogula-Kozłowska, W., Rozbicka, K., Rogula-Kopiec, P., Mathews, B., Brandyk, A. 2018. Concentration, chemical composition and origin of PM1: Results from the first long-term measurement campaign in Warsaw (Poland). Aerosol and air quality research, 18(3), 636–654. https://doi.org/10.4209/aaqr.2017.06.0221
- 13. Muller, G. 1979. Schwermetalle in den sediment des Rheins, Veranderungem Seit 1971. Umschau.
- 14. OpenStreetMap Contributors. 2023. OpenStreet-Map Data Extracts. https://download.geofabrik.de
- 15. Pastuszka, J.S., Rogula-Kozłowska, W., Zajusz-Zubek, E. 2010. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environmental Monitoring and Assessment, 168(1–4), 613–627. https://doi.org/10.1007/s10661-009-1138-8
- 16. Penkała, M., Ogrodnik, P., Rogula-Kozłowska, W. 2018. Particulate matter from the road surface abrasion as a problem of non-exhaust emission control. Environments, 5(1), 9. https://doi.org/10.3390/environments5010009
- 17. Penkała, M., Ogrodnik, P., Rogula-Kozłowska, W. 2019. Silica dust as an additive in concrete with proven impact on human health. Polish Journal of Environmental Studies, 28(6), 4057–4071. https://doi.org/10.15244/pjoes/99241
- 18. Penkała, M., Rogula-Kozłowska, W., Ogrodnik, P., Bihałowicz, J.S., Iwanicka, N. 2023. Exploring the relationship between particulate matter emission and the construction material of road surface: Case study of highways and motorways in Poland. Materials, 16(3), 1200. https://doi.org/10.3390/ma16031200
- 19. Rogula-Kozłowska, W. 2015. Chemical composition and mass closure of ambient particulate matter at a crossroads and a highway in Katowice, Poland. Environment Protection Engineering. https://doi.org/10.5277/epe150202
- 20. Rogula-Kozłowska, W., Klejnowski, K., Rogula-Kopiec, P., Błlaszczak, B., Mathews, B., Szopa, S. 2013. Masowy rozkład pierwiastków w próbkach pyłu zawieszonego pobranych w obszarze tła miejskiego: Wyniki ośmiomiesięcznych badań w Zabrzu. Rocznik Ochrona Środowiska, 15, 1022–1040.
- 21. Rogula-Kozłowska, W., Majewski, G., Czechowski, P.O. 2015. The size distribution and origin of elements bound to ambient particles: A case study of a Polish urban area. Environmental Monitoring and Assessment, 187(5), 240–240. https://doi.org/10.1007/s10661-015-4450-5
- 22. Rybak, J., Wróbel, M., Stefan Bihałowicz, J., Rogula-Kozłowska, W. 2020. Selected metals in urban road dust: Upper and Lower Silesia case study. Atmosphere, 11(3), 290–290. https://doi.org/10.3390/atmos11030290
- 23. Sardans, J., Peñuelas, J. 2005. Trace element accumulation in the moss Hypnum cupressiforme Hedw. and the trees Quercus ilex L. and Pinus halepensis Mill. In Catalonia. Chemosphere, 60(9), 1293–1307. https://doi.org/10.1016/j.chemosphere.2005.01.059
- 24. Świetlik, R., Strzelecka, M., Trojanowska, M., others. 2013. Evaluation of traffic-related heavy metals emissions using noise barrier road dust analysis. Polish Journal of Environmental Studies, 22(2), 561–567.
- 25. Świetlik, R., Trojanowska, M. 2014. Transport samochodowy jako źródło emisji metali ciężkich do środowiska. Logistyka.
- 26. Thorpe, A., Harrison, R.M. 2008. Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of The Total Environment, 400(1–3), 270–282. https://doi.org/10.1016/j.scitotenv.2008.06.007
- 27. Wedepohl, K.H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/0016-7037(95)00038-2
- 28. Welch, B.L. 1947. The generalization of ‘student’s’ problem when several different population varlances are involved. Biometrika, 34(1–2), 28–35. https://doi.org/10.1093/biomet/34.1-2.28
- 29. Zechmeister, H.G., Hohenwallner, D., Riss, A., Hanus-Illnar, A. 2005. Estimation of element deposition derived from road traffic sources by using mosses. Environmental Pollution, 138(2), 238–249. https://doi.org/10.1016/j.envpol.2005.04.005
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-06f892b5-131d-442a-9909-cd71bef22ad0