Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 37, no. 1 | 124--134
Tytuł artykułu

Bat optimization based neuron model of stochastic resonance for the enhancement of MR images

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stochastic resonance (SR) performs the enhancement of the low in contrast image with the help of noise. The present paper proposes a modified neuron model based stochastic resonance approach applied for the enhancement of T1 weighted, T2 weighted, fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted imaging (DWI) sequences of magnetic resonance imaging. Multi objective bat algorithm has been applied to tune the parameters of the modified neuron model for the maximization of two competitive image performance indices contrast enhancement factor (F) and mean opinion score (MOS). The quality of processed image depends on the choice of these image performance indices rather the selection of SR parameters. The proposed approach performs well on enhancement of magnetic resonance (MR) images, as a result there is improvement in the gray-white matter differentiation and has been found helpful in the better diagnosis of MR images.
Wydawca

Rocznik
Strony
124--134
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India, munendra107@gmail.com
autor
  • Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
autor
  • School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
Bibliografia
  • [1] Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910–4.
  • [2] Lin L, Meng X, Liang X. Reduction of impulse noise in MRI images using block-based adaptive median filter. IEEE International Conference on Medical Imaging Physics and Engineering (ICMIPE): IEEE. 2013. pp. 132–4.
  • [3] Foi A. Noise estimation and removal in MR imaging: the variance-stabilization approach. IEEE International Symposium on Biomedical Imaging: From Nano to Macro: IEEE. 2011. pp. 1809–14.
  • [4] Manjón JV, Coupé P, Buades A. MRI noise estimation and denoising using non-local PCA. Med Image Anal 2015;22:35–47.
  • [5] Riji R, Rajan J, Sijbers J, Nair MS. Iterative bilateral filter for Rician noise reduction in MR images. Signal Image Video Process 2015;9:1543–8.
  • [6] Aja-Fernández S, Alberola-López C, Westin C-F. Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE Trans Image Process 2008;17:1383–98.
  • [7] Wu J, Tian X, Sun Y, Tang Z. A new wavelet-based adaptive algorithm for MR image enhancement. IEEE/ICME International Conference on Complex Medical Engineering; 2007.
  • [8] Crespo J, Maojo V, Herrero C, Sanandres J. Enhancement of MR images using non-linear techniques, Engineering in Medicine and Biology Society. Bridging Disciplines for Biomedicine Proceedings of the 18th Annual International Conference of the IEEE: IEEE; 1996. p. 752–3.
  • [9] Ishak NF, Gangeh M, Logeswaran R. A preliminary study of high-field MRI image enhancement techniques applied to low-field MR brain images. 4th Kuala Lumpur International Conference on Biomedical Engineering: Springer. 2008. pp. 482–6.
  • [10] Jha RK, Chouhan R, Biswas PK, Aizawa K. Internal noise-induced contrast enhancement of dark images. 19th IEEE International Conference on Image Processing: IEEE. 2012. pp. 973–6.
  • [11] Maragatham G, Roomi SMM. PSO-based stochastic resonance for automatic contrast enhancement of images. Signal Image Video Process 2016;10:207–14.
  • [12] Peng R, Varshney PK. Noise-refined image enhancement using multi-objective optimisation. IET Image Process 2013;7:191–200.
  • [13] Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic resonance. Rev Mod Phys 1998;70:223.
  • [14] Rallabandi VS, Roy PK. Magnetic resonance image enhancement using stochastic resonance in Fourier domain. Magn Reson Imaging 2010;28: 1361–73.
  • [15] Rallabandi VS, Roy PK. Stochastic resonance-based tomographic transform for computed tomographic image enhancement of brain lesions. J Comput Assist Tomogr 2008;32:966–74.
  • [16] Rallabandi VS. Enhancement of ultrasound images using stochastic resonance-based wavelet transform. Comput Med Imaging Graph 2008;32:316–20.
  • [17] Chouhan R, Jha RK, Biswas PK. Enhancement of dark and low-contrast images using dynamic stochastic resonance. IET Image Process 2013;7:174–84.
  • [18] Bulsara A, Jacobs E, Zhou T, Moss F, Kiss L. Stochastic resonance in a single neuron model: Theory and analog simulation. J Theor Biol 1991;152:531–55.
  • [19] Yang X-S, Hossein Gandomi A. Bat algorithm: a novel approach for global engineering optimization. Eng Comput 2012;29:464–83.
  • [20] Nicolis C, Nicolis G. Stochastic aspects of climatic transitions–additive fluctuations. Tellus 1981;33:225–34.
  • [21] Benzi R, Parisi G, Sutera A, Vulpiani A. Stochastic resonance in climatic change. Tellus 1982;34:10–6.
  • [22] Buhmann J, Schulten K. Influence of noise on the function of a ‘‘physiological’’ neural network. Biol Cybern 1987;56:313–27.
  • [23] Buhmann J, Schulten K. Influence of noise on the behaviour of an autoassociative neural network. Neural Networks for Computing: AIP Publishing. 1986. pp. 71–6.
  • [24] Bulsara A, Boss R, Jacobs E. Noise effects in an electronic model of a single neuron. Biol Cybern 1989;61:211–22.
  • [25] Risken H. The Fokker–Planck equation: methods of solution and applications. Springer Ser Synerget 1989;18.
  • [26] Vom Scheidt J, Gard TC. Introduction to stochastic differential equations. New York-Basel: Marcel Dekker Inc.; 1988, XI, 234 pp., $78. ISBN 0-8247-7776-X (Pure and Applied Mathematics 114); Vom Scheidt J, Gard TC. Introduction to stochastic differential equations. ZAMM-J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik1989;69:258.
  • [27] Yang X-S. A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010): Springer. 2010. pp. 65–74.
  • [28] Zitzler E, Thiele L. An evolutionary algorithm for multiobjective optimization: the strength pareto approach. Citeseer; 1998.
  • [29] Yang X-S. Bat algorithm for multi-objective optimisation. Int J Bio-Inspir Comput 2011;3:267–74.
  • [30] Horita Y, Sato M, Kawayoke Y, Sazzad ZP, Shibata K. Quality evaluation model using local features of still picture. 14th European Signal Processing Conference: IEEE. 2006. pp. 1–5.
  • [31] Wang Z, Sheikh HR, Bovik AC. No-reference perceptual quality assessment of JPEG compressed images. Proceedings of the International Conference on Image Processing: IEEE, vol. 1; 2002. p. I-477–80.
  • [32] Fletcher LM, Barsotti JB, Hornak JP. A multispectral analysis of brain tissues. Magn Reson Med 1993;29:623–30.
  • [33] MacAdam DL. Maximum attainable luminous efficiency of various chromaticities. J Opt Soc Am 1950;40:120.
  • [34] Aja-Fernández S, Niethammer M, Kubicki M, Shenton ME, Westin C-F. Restoration of DWI data using a Rician LMMSE estimator. IEEE Trans Med Imaging 2008;27:1389–403.
  • [35] Zuiderveld K. Contrast limited adaptive histogram equalization. Graphics gems IV. Academic Press Professional, Inc.; 1994. p. 474–85.
  • [36] Mukherjee J, Mitra SK. Enhancement of color images by scaling the DCT coefficients. IEEE Trans Image Process 2008;17:1783–94.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-06f13a4e-ac51-4f4d-8289-33e8a5c8fe61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.