Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 28, Fasc. 1 | 1--19
Tytuł artykułu

Stochastic volatility : approximation and goodness-of-fit test

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let X be the unique solution started from x0 of the stochastic differential equation dXt= θ(t;Xt)dBt +b(t;Xt)dt with B a standard Brownian motion. We consider an approximation of the volatility θ(t;Xt), the drift being considered as a nuisance parameter. The approximation is based on a discrete time observation of X and we study its rate of convergence as a process. A goodness-of-fit test is also constructed.
Wydawca

Rocznik
Strony
1--19
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
autor
  • Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, Boîte courrier 188, 4 Place Jussieu 75252 Paris Cedex 5, France, nourdin@ccr.jussieu.fr
Bibliografia
  • [1] R. H. Abraham, J. E. Marsden and T. S. Ratiu, Manifolds, Tensor Analysis, and Applications, 2nd edition, Springer, Berlin-Heidelberg-NewYork 1988.
  • [2] O. E. Barndorff-Nielsen and N. Shephard, Realized power variation and stochastic volatility models, Bernoulli 9 (2003), pp. 243-265.
  • [3] E. Becker, Théorèmes limites pour des processus discretisés, Thèse, Université de Paris VI, 1998.
  • [4] S. Berman, Sign-invariant random variables and stochastic processes with sign-invariant increments, Trans. Amer. Math. Soc. 119 (1965), pp. 216-243.
  • [5] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
  • [6] S. Delattre and J. Jacod, A central limit theorem for normalized functions of the increments of a diffusion process, in the presence of round-off errors, Bernoulli 3 (1997), pp. 1-28.
  • [7] D. Florens-Zmirou, On estimating the diffusion coefficient from discrete observations, J. Appl. Probab. 30 (1993), pp. 790-804.
  • [8] V. Genon-Catalot, C. Laredo and D. Picard, Non-parametric estimation of the diffusion coefficient by wavelets methods, Scand. J. Statist. 19 (1992), pp. 317-335.
  • [9] M. Gradinaru and I. Nourdin, Approximation at first and second order of m-order integrals of the fractional Brownian motion and of certain semimartingales, Electron. J. Probab. 8 (2003), paper no. 18.
  • [10] M. Hoffmann, Minimax estimation of the diffusion coefficient through irregular samplings, Statist. Probab. Lett. 32 (1997), pp. 11-24.
  • [11] M. Hoffmann, Lp estimation of the diffusion coefficient, Bernoulli 5 (1999), pp. 447-481.
  • [12] J. Jacod, Limit of random measures associated with the increments of a Brownian semimartingale, Prépublication no. 120, Université de Paris VI, 1994.
  • [13] A. Jakubowski, J. Mémin and G. Pagès, Convergence en loi des suites d’intégrales stochastiques sur l’espace D1 de Skorokhod, Probab. Theory Related Fields 81 (1989), pp. 111-137.
  • [14] D. Nualart, The Malliavin calculus and related topics, Springer, Berlin-Heidelberg-New York 1995.
  • [15] D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd edition, Springer, Berlin-Heidelberg-New York 2005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-06b0add7-1e87-4e44-a41d-7d479902f911
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.