Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 9, no. 3 | 147--152
Tytuł artykułu

The use of high moisture sewage sludge in the chp unit integrated with biomass drying and gasification

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the evaluation of the possibility of the use of a biomass with high moisture content in a cogeneration plant with gas piston engine. The dried sewage sludge-derived syngas is used as a fuel. Sewage sludge are characterized by about 70 wt% of moisture content after the dewatering process. The drying process which is applied as the next step requires great amount of energy. For this reason the thermal integration of the drying process with a piston engine which produce a significant amount of waste heat is proposed. The legal situation of the sewage sludge treatment is briefly explained. The thermodynamic analysis of the cogeneration plant based on the gas piston engine integrated with drying and gasification units was conducted. The models of individual components of the system were developed using Engineering Equation Solver and MS Excel software. The maximum moisture of the fuel acceptable for the autonomic operation of the plant is calculated. The influence of the plant’s scale for the acceptable moisture content in the biomass is studied. The analyzes revealed, that the waste heat from the engine is not sufficient for the drying unit. The operation of cogeneration plant requires an additional source of energy or drying the sewage sludge in an independent installation to moisture content about 50-55%.
PL
W artykule przedstawiono ocenę możliwości zastosowania biomasy o wysokiej wilgotności w układzie kogeneracyjnym z gazowym silnikiem tłokowym. Paliwem wykorzystanym w układzie jest gaz powstały w procesie zgazowania osuszonych osadów ściekowych. Osady ściekowe cechują się wysoką zawartością wody, sięgającą 70% (masowo) po wstępnym odwodnieniu mechanicznym. Proces osuszania biomasy wymaga doprowadzenia znacznych ilości energii, dlatego zaproponowano integrację cieplną z silnikiem tłokowym, produkującym znaczne ilości ciepła odpadowego. Przedstawiono pokrótce akty prawne dotyczące utylizacji osadów ściekowych. Przeprowadzono analizę termodynamiczną układu kogeneracyjnego opartego o gazowy silnik tłokowy zintegrowany z instalacjami osuszania oraz zgazowania biomasy. Na potrzeby analizy opracowano modele poszczególnych komponentów układu wykorzystując programy Engineering Equation Solver oraz MS Excel. Wyznaczono maksymalną wilgotność paliwa dostarczanego do układu, dla której możliwa będzie autonomiczna praca instalacji. Przeanalizowano także wpływ wielkości instalacji na akceptowalną wilgotność paliwa. Przeprowadzone analizy wykazały, że ciepło odpadowe z silnika tłokowego nie pozwala na osuszenie osadów ściekowych w wymaganym stopniu. Praca układu kogeneracyjnego z silnikiem tłokowym możliwa jest przy zapewnieniu dodatkowego źródła energii lub przy wstępnym osuszeniu osadów ściekowych w niezależnej instalacji do zawartości wody na poziomie 50-55%.
Wydawca

Rocznik
Strony
147--152
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland, wojciech.uchman@polsl.pl
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] Skorek J., Kalina J.; Gazowe układy kogeneracyjne (Gas-fuelled combined heat and power plants). Wydawnictwo Naukowo-Techniczne, Warszawa, 2005 (in Polish).
  • [2] Kalina J.; Analiza i optymalizacja układów technologicznych energetyki rozproszonej zintegrowanych z termicznym zgazowaniem biomasy (Analysis and optimization of technological systems of distributed generation plants integrated with thermal gasification of biomass). Wydawnictwo Politechniki Śląskiej, Gliwice, 2013 (in Polish).
  • [3] Skorek J.; Ocena efektywności energetycznej i ekonomicznej gazowych układów kogeneracyjnych małej mocy (Technical and economical effectiveness of the small scale gas fuelled cogeneration plants). Wydawnictwo Politechniki Śląskiej, Gliwice, 2002 (in Polish).
  • [4] Skorek-Osikowska A., Bartela Ł., Kotowicz J., Sobolewski A., Iluk T., Remiorz L.; The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity and heat generation. Energy, Vol.67, 2014, p.328-340.
  • [5] Bianchini A., Bonfiglioli L., Pellegrini M., Saccani C.; Sewage sludge drying process integration with wasteto-energy power plant. Waste Management, Vol.42, 2015, p.159-165.
  • [6] Bień J., Wystalska K.; Przekształcanie osadów ściekowych w procesach termicznych (Sewage sludge conversion in thermal processes). Wydawnictwo Seidel-Przywecki, Warszawa, 2009 (in Polish).
  • [7] Werle S., Wilk R.K.; Analysis of use a sewage sludge derived syngas in the gas industry. Rynek Energii, No.4, 2011; p.23-27.
  • [8] Magdziarz A., Werle S.; Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Management, Vol.34, 2014, p.174-179.
  • [9] Kalisz S., Pronobis M., Baxter D.; Co-firing of biomass waste-derived syngas in coal power boiler. Energy, Vol.33, 2008, p.1770-1778.
  • [10] Uchman W., Werle S.; The use of low-calorific value gases in environmental protection engineering. Architecture Civil Engineering Environment, Vol.1, 2016, p.127-132.
  • [11] Wilk M., Magdziarz A., Zajemska M., Kuźnia M.; Syngas as a reburning fuel for natural gas combustion. Chemical and Process Engineering, Vol.35, No.2, 2014, p.181-190.
  • [12] Werle S.; Estimation of reburning potential of syngas from sewage sludge gasification process. Chemical and Process Engineering, Vol.32, No.4, 2011, p.411-421.
  • [13] Kotowicz, J., Sobolewski A., Iluk T.; Energetic analysis of a system integrated with biomass gasification. Energy, Vol.52, 2013, p.265-278.
  • [14] Ustawa z dn. 27 kwietnia 2001 r. o odpadach (Dz.U. 2001 nr 62, poz. 628 z późniejszymi zmianami) (Waste Management Act of 27 April 2001) (in Polish).
  • [15] Rozporządzenie Ministra Środowiska z dn. 9 grudnia 2014 r. w sprawie katalogu odpadów (Waste Catalogue of 9 December 2014) (in Polish).
  • [16] Uchwała nr 217 Rady Ministrów z dn. 24 grudnia 2012 r. w sprawie krajowego planu gospodarki
  • odpadami 2014 (National Waste Management Plan of 24 December 2012) (in Polish).
  • [17] Rozporządzenie Ministra Gospodarki z dn. 8 stycznia 2013 r. w sprawie kryteriów oraz procedur dopuszczania odpadów do składowania na składowisku odpadów danego typu (Dz.U. 2010 r. nr 137, poz. 38) (Ordinance of the Minister of Economy of 8 January 2013) (in Polish).
  • [18] Rozporządzenie Ministra Środowiska z dn. 13 lipca 2010 r. w sprawie komunalnych osadów ściekowych (Dz.U. 2010 r. nr 137, poz. 924) (Ordinance of the Minister of Environment of 13 July 2012) (in Polish).
  • [19] Council Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment.
  • [20] Council Directive 86/278/EEC of 4 July 1986 on the protection of the environment and in particular of the soil, when sewage sludge is used in agriculture.
  • [21] Council Directive 99/31/EC of 26 April 1999 on the landfill of waste.
  • [22] Werle S.; Wielokryterialna analiza procesu zgazowania komunalnych osadów ściekowych (Multi-criterial analysis of the gasification process of municipal sewage sludge), Wydawnictwo Politechniki Śląskiej, Gliwice, 2014 (in Polish).
  • [23] Werle S.; Sewage sludge-to-energy management in eastern Europe: a Polish perspective. Ecological Chemistry and Engineering S, Vol.22, 2015, p.459-469.
  • [24] Basu P.; Biomass gasification and pyrolysis. Practical design and theory. Elsevier Inc, Amsterdam, 2010.
  • [25] Uchman W., Werle S., Skorek-Osikowska A.; Pozyskiwanie paliwa gazowego z roślin energetycznych (Gaseous fuel production from energy crops). Materiały VI Konferencji Naukowo-Technicznej Energetyka Gazowa 2016, Vol.1, 2016, p.171-188.
  • [26] Korus A., Szlęk A.; The effect of biomass moisture content on the IGCC efficiency. Biomass and Bioenergy, Vol.80, 2015, p.222-228.
  • [27] Fagernas L., BrammerJ., Wilen C., Lauer M., Verhoeff F.; Drying of biomass for second generation synfuel production. Biomass and Bioenergy, Vol.34, 2010, p.1267-1277.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-06981e9e-d33d-472d-90c5-c109b9892430
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.