Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 7, no. 2 | 39--45
Tytuł artykułu

The Braun machine as a classifier based on elementary physical phenomena in the classification of multivariate data sets

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article was presented to model the classifier algorithm based on elementary physical phenomena. The model for this is the result of research conducted by the author on the use of the mechanisms of physical phenomena in the classification of multidimensional data. In this article we have presented a model used for a classification of multidimensional data in a broader sense, called Braun’s cathode machine. The internal structure of the machine presented on this paper has been based on the architecture of a cathode-ray tube – Braun’s tube. For a machine model described this way a machine training algorithm has been proposed as well as response computing algorithms. In the final chapter we have presented the results of the machine tests for the notions connected with the classification and self-organization of multidimensional data.
Wydawca

Rocznik
Strony
39--45
Opis fizyczny
Bibliogr. 10 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Institute of Computer Science, Cracow, Poland, mswiecic@pk.edu.pl
Bibliografia
  • 1. Blake C.L., Merz C.J.:UCI Repository of machine learning databases, http://www.ics.uci.edu/mlearn/MLRepository.html. University of California, Irvine, Dept. of Information and Computer Science, 1998-2003.
  • 2. De Castro L.N., Von Zuben, F. J.: An Evolutionary Immune Network for Data Clustering. Proc. of the IEEE SBRN 2000, pp. 84-89.
  • 3. Duch W: Support Vector Neural Training; Lecture Notes in Computer Science 2005, Vol. 3697: 67-72.
  • 4. Griffiths D., J. Introduction to Electrodynamics (3rd ed.). Prentice Hall 1998.
  • 5. Peltonen J., Kaski S.: Discriminative Components of Data; IEEE Trans. on neural Networks 2005, vol.16, pp.68-83.
  • 6.Swiecicki M., Wajs W., Wais P.: An artificial immune algorithms apply to pre-processing signals Springer-Verlag, 2004. – LNCS 3037, pp. 703–707.
  • 7. Swiecicki M.: An algorithm based on the construction of Braun’s cathode ray tube as a novel technique for data classification; LNCS Vol. 5864/2009, ICONIP 2009 - 16th International Conference on Neural Information Processing; A. Leung, M. Lee, J.H. Chan, Springer-Verlag, 2009.
  • 8. Schlick T.: Molecular modeling and simulation: an interdisciplinary guide. Berlin: Springer, 2002.
  • 9. Statlog Datasets: comparison of results: http://www.is.umk.pl/projects/datasets-stat.html, Department of Informatics Nicolaus Copernicus University 2009.
  • 10. Tipler P.: Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics (5th ed.). W. H. Freeman. 2004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-067f948e-e7b3-4c94-bb3e-48783d48cbe2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.