Warianty tytułu
Języki publikacji
Abstrakty
In this research, an experimental study is presented, which extends the usage of eddy current and load sensors in progressive stamping tools to optimize and continuously monitor the stamping process. The purpose of the research was to automatically detect material scrap before it leaves imprints on the part and based on the sensor’s readings, determine the optimal tool bottom position. The scrap thickness that needs to be detected was established in an experiment by visual evaluation of the result. To determine the optimal bottom position, a linear regression method was used, and the results were evaluated by part quality parameter. The research results consist of separate detection steps and the conclusion was made only after the serial type production. Overall results of scrap detection were influenced by the design of the existing tool. The bottom position detection consists of various readings interpretations and multi-step method descriptions. Based on the acquired results of both methods, implementing the in–die sensors was considered successful and applicable to new tools.
Czasopismo
Rocznik
Tom
Strony
art. no. 189453
Opis fizyczny
Bibliogr. 31 poz., rys., tab. wykr.
Twórcy
autor
- Faculty of Transport Engineering, Vilnius Gediminas Technical University, Lithuania, juras.skardzius@stud.vilniustech.lt
- LLC “Stansefabrikken Automotive”, Lithuania
autor
- Faculty of Transport Engineering, Vilnius Gediminas Technical University, Lithuania, saulius.nagurnas@vilniustech.lt
autor
- Faculty of Transport Engineering, Vilnius Gediminas Technical University, Lithuania, paulius.skackauskas@vilniustech.lt
Bibliografia
- 1. Zhang C, Liang C, Yu D, Zhang C, Xiao H and Wang H. Application MEMS multi–sensors for monitoring the forming load of the stamping press. IEEE International Conference on Mechatronics and Automation 2012; 1518–1523, doi:10.1109/ICMA.2012.6284362.
- 2. Jian C, Ekkard B, Mingwang F, Gao R, Liang B, Merklein M, Schmidt M, Yanagimoto J. Manufacturing of advanced smart tooling for metal forming. CIRP Annals 2019; 68(2): 605–628, https://doi.org/10.1016/j.cirp.2019.05.001.
- 3. Ravindran D, Yu–Chih S. Sensors for Sheet Metal Forming, Sheet Metal Forming: Processes and Applications, Edited By Altan T, Tekkaya A. ASM International 2012; 301–315, https://doi.org/10.31399/asm.tb.smfpa.t53500301.
- 4. Asensi P, Montes I, García N. In Process Measurement Techniques Based on Available Sensors in the Stamping Machines for the Automotive Industry. In Key Engineering Materials. Transport Technical Publications, Ltd 2022; 926: 853–861, https://doi.org/10.4028/p–gvqkd4.
- 5. Balluff. Metal forming application note, http://www.clarkandosborne.com/resources/pdf/MetalFormingApplications.pdf.
- 6. Kaman. Inductive technology handbook, https://www.kaman.com/sites/default/files/Kaman_Applications_Handbook_WEB%20%281%29.pdf.
- 7. Dickerson G. Demystifying die protection. Sensors and controls: eyes and brain of die protection. Stamping Journal 2010. November/December: 12 –13 p.
- 8. Bachmanm K. Sensors clear the way for high–speed stamping. Stamping Journal 2008, https://www.thefabricator.com/stampingjournal/article/stamping/sensors–clear–the–way–for–high–speed–stamping.
- 9. Bird D. Where sensors make sense. Stamping Journal 2008, https://www.thefabricator.com/stampingjournal/article/stamping/where–sensors–make–sense.
- 10. Hedrick A. Die Science: Die protection techniques. Stamping Journal 2017, https://www.thefabricator.com/stampingjournal/article/stamping/die–protection–techniques.
- 11. Bird D. Electronic sensors augment error–proofing, quality control programs. The Tube & Pipe Journal 2013, https://www.thefabricator.com/tubepipejournal/article/testingmeasuring/electronic–sensors–augment–error–proofing–quality–control–programs.
- 12. Lynch T. Metal Stamping Sensors Boost Efficiency, Quality. 2015, http://www.kenmode.com/blog/metal–stamping–sensors–boost–efficiency–quality.
- 13. Puchalski A, Komorska I. Generative modelling of vibration signals in machine maintenance. Eksploatacja i Niezawodność – Maintenance and Reliability 2023; 25(4), https://doi.org/10.17531/ein/173488.
- 14. Overly S. Recovering from press overload: Protection systems help to sense overload and minimize machine, tool damage. Stamping Journal 2001, https://www.thefabricator.com/thefabricator/article/stamping/recovering–from–press–overload–protection–systems–help–to–sense–overload–and–minimize–machine–tool–damage.
- 15. Bury P, Stosiak M, Urbanowicz K, Kodura A, Kubrak M, Malesińska A. A Case Study of Open- and Closed-Loop Control of Hydrostatic Transmission with Proportional Valve Start-Up Process. Energies 2022; 15(5), https://doi.org/10.3390/en15051860.
- 16. Deptuła A, Stosiak M, Cieślicki R, Karpenko M, Urbanowicz K, Skačkauskas P, Małgorzata A. Application of the Methodology of Multi-Valued Logic Trees with Weighting Factors in the Optimization of a Proportional Valve. Axioms 2023; 12(1), https://doi.org/10.3390/axioms12010008.
- 17. Groche P, Hohmann J, and Übelacker D. Overview and comparison of different sensor positions and measuring methods for the process force measurement in stamping operations. Measurement 2019; 135: 122–130, https://doi.org/10.1016/j.measurement.2018.11.058.
- 18. Li X, Bassiuny A. Transient dynamical analysis of strain signals in sheet metal stamping processes. International Journal of Machine Tools and Manufacture 2008; 48(5): 576–588, https://doi.org/10.1016/j.ijmachtools.2007.06.010.
- 19. Garcia E, Montés N, Llopis J, Lacasa A. Miniterm, a Novel Virtual Sensor for Predictive Maintenance for the Industry 4.0 Era. Sensors 2022; 22(16): 6222, https://doi.org/10.3390/s22166222.
- 20. Peinado–Asensi I, Montés N, García E. Virtual Sensor of Gravity Centres for Real–Time Condition Monitoring of an Industrial Stamping Press in the Automotive Industry. Sensors 2023; 23(14): 6569, https://doi.org/10.3390/s23146569.
- 21. Zhou C, Liu K, Zhang X, Zhang W and Shi J. An Automatic Process Monitoring Method Using Recurrence Plot in Progressive Stamping Processes. IEEE Transactions on Automation Science and Engineering 2016; 13(2): 1102–1111, doi:10.1109/TASE.2015.2468058.
- 22. Jin J. Individual Station Monitoring Using Press Tonnage Sensors for Multiple Operation Stamping Processes. Journal of Manufacturing Science and Engineering 2004; 126(1): 83–90, https://doi.org/10.1115/1.1643749.
- 23. SK–Reporter. Combined force and acoustic sensors safeguard stamping processes, 2014. https://www.impaxptg.com/pdf/baumann–stamping–reporter–article.pdf.
- 24. Karabacak Y. Deep learning–based CNC milling tool wear stage estimation with multi–signal analysis. Eksploatacja i Niezawodność – Maintenance and Reliability 2023; 25(3), https://doi.org/10.17531/ein/168082.
- 25. Garcia C. Artificial intelligence applied to automatic supervision, diagnosis and control in sheet metal stamping processes. Journal of Materials Processing Technology 2005; 164: 1351–1357, https://doi.org/10.1016/j.jmatprotec.2005.02.031.
- 26. Kozłowski E, Antosz K, Mazurkiewicz D, Sęp J, Żabiński T. Integrating advanced measurement and signal processing for reliability decision–making. Eksploatacja i Niezawodność – Maintenance and Reliability 2021; 23(4): 777–87, https://doi.org/10.17531/ein.2021.4.20.
- 27. Duan R, He J, Feng T, Huang S, Chen L. Effective sensor placement based on a VIKOR method considering common cause failure in the presence of epistemic uncertainty. Eksploatacja i Niezawodność – Maintenance and Reliability 2021; 23(2): 253–62, https://doi.org/10.17531/ein.2021.2.5.
- 28. Azamirad G, Arezoo B. Structural design of stamping die components using bi–directional evolutionary structural optimization method. International Journal of Advanced Manufacturing Technologies 2016; 87: 969–979, https://doi.org/10.1007/s00170–016–8344–7.
- 29. Finnerty J. 50 Tips for Better Die Protection. 2019, https://www.slideshare.net/Wintriss/50–tips–for–better–die–protection.
- 30. Niemietz P, Kornely M, Trauth D, et al. Relating wear stages in sheet metal forming based on short– and long–term force signal variations. Journal of Intelligent Manufacturing 2022; 33: 2143–2155, https://doi.org/10.1007/s10845–022–01979–0.
- 31. Geometric Dimensioning and Tolerancing. The Ultimate GD&T Guide. ASME Y14.5–2009. Press: 2009.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-067befc4-4792-4168-8225-81e530d816f2